Internet Week 2005 T23講演資料

フォトニックネットワークとGeneralized MPLS ~ 技術と最新動向 ~

日本電信電話(株) 未来ねっと研究所

今宿 亙

imajuku.wataru@lab.ntt.co.jp

2005年12月8日

Copyright Nippon Telegraph and Telephone Corp.

Dogo 1

第二部

Generalized MPLS技術

- GMPLSの概要
- GMPLSアーキテクチャ
- リンクマネジメント
- ルーティング技術
- シグナリング技術
- プロテクション・リストレーション
- 最新の標準化動向

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

MPLSからの発展

- Multi Protocol Label Switching(MPLS)
 - ATM、Frame Relay等を下位レイヤに用いるラベルスイッチング技術
 - Shim Headerを付与 = 電気的なラベル
 - 当初の目論見は、高速IPルーティングの実現
 - 現在は、Virtual Private Networkへの応用が主流
 - その次に、トラフィックエンジニアリング

- MPLSをLayer 1のネットワークに適用、それがGeneralized MPLS
 - え!!! まさか光パケットの技術!?
 - 違います!

MPLSのLSP(Label Switched Path)の制御を一般化する話です!!

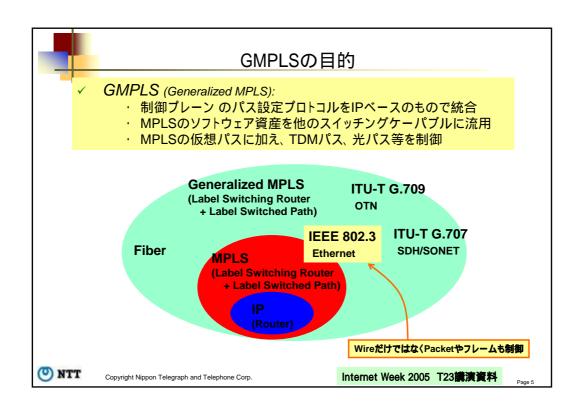
Copyright Nippon Telegraph and Telephone Corp.

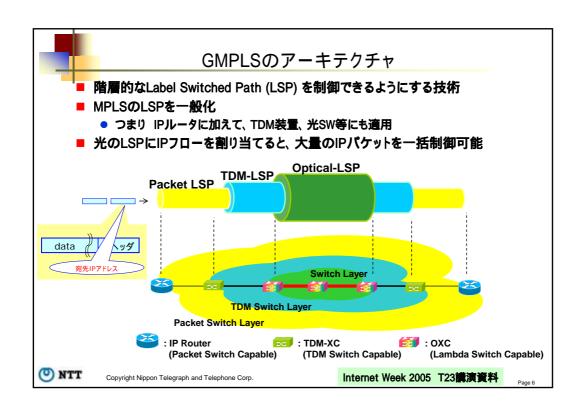
Internet Week 2005 T23講演資料

Dogo 2

GMPLS標準化のきっかけ

- MPλS(MPLambdaS): 波長番号をラベルとしてリンクに割り当てることで波長パスをLabel Switched Path として制御する。
 - 分散制御でOXCを制御する機構として実現
 - 1999年10月に、IETFにI-Dが初提出される
- 2000年1月のOIF会合でNTTがPhotonic MPLSを提案、AT&T, Sycamore, Ciena, χross からも同時にMPλS類似の提案がなされる。




- ITEFへ共同で提案(2000年2月)
 - draft-kompella-mpls-optical-00.txt
 Juniper Networks, Cisco Systems, UUNET, Global Crossing, AT&T Labs, Level 3 Communications, NTT, Marconi, Ciena Corporation, Chromisys, New Access Communications, Sirocco Systems

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

GMPLS & Switching Capability

Туре	GMPLS								
	MPLS				Photonic MPLS				
Label Switch	Packet	Frame	Cell	Time	Slot	Wavelength		Optical Burst/Optical Packet	
Label	Shim Header	DLCI	VCI	Slot Po	sition	Wavelength(s), Waveband	Sub- carrier, CDM	Packet Header	
Signaling	LDP, RSVP-TE,			G	eneralized RSVP-TE,		labelynar	labelynamic	
Protocol	CR-LDP, BGP			Generalized CR-LDP		RSVP-1	RSVP-TE (??)		
NetWork	LS	FR-SW	ATM-SW	DXC	OTDM	OXC, PXC			
Equipment					-XC				
Remarks				OTDM	MPλS	Research	phase		

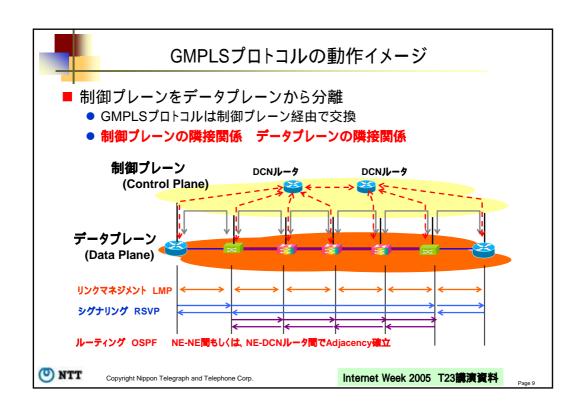
O NTT

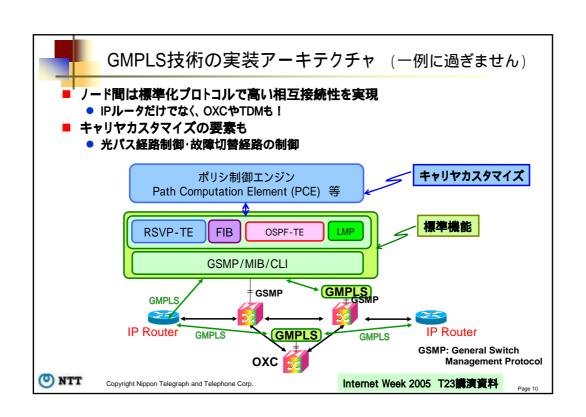
Copyright Nippon Telegraph and Telephone Corp.

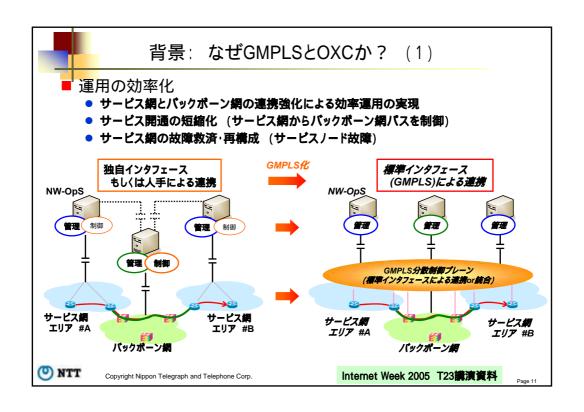
Internet Week 2005 T23講演資料

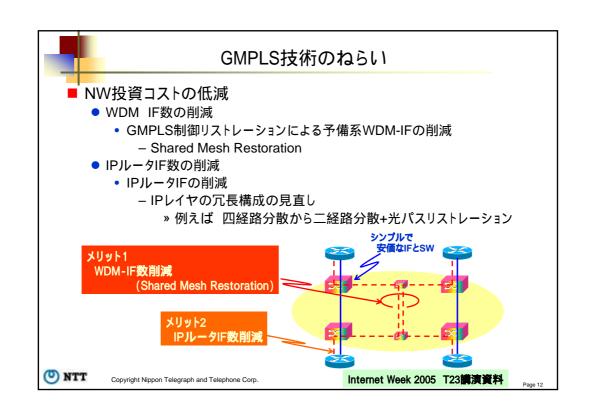
GMPLSプロトコルの概要

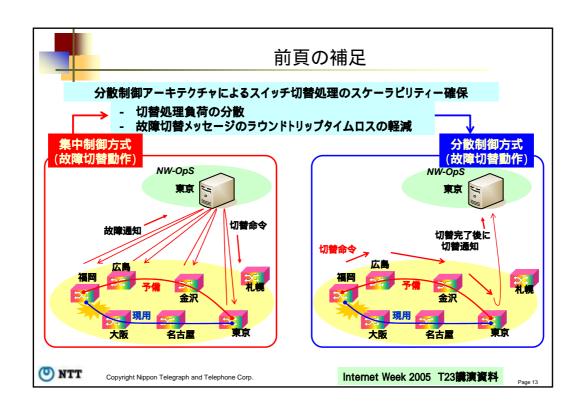
リンクマネジメントプロトコル


- LMP (Link Management Protocol)
- 制御回線の監視
- 自動隣接発見
- 故障区間評定


ルーティングプロトコル - OSPF (Open Shortest Path First) プロトコル ネットワーク構成の自動認識&自動計算

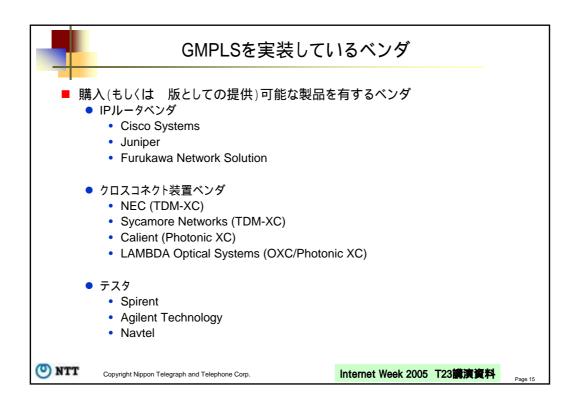

シグナリングプロトコル - RSVP-TE (Resource reSerVation Protocol for TE) 光パス生成・削除・切替制御 TE: Traffic Engineering

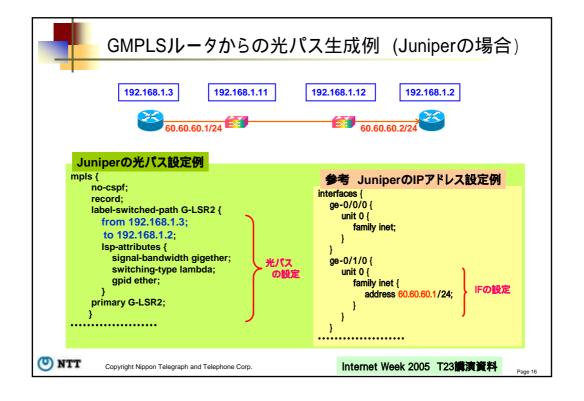

O NTT

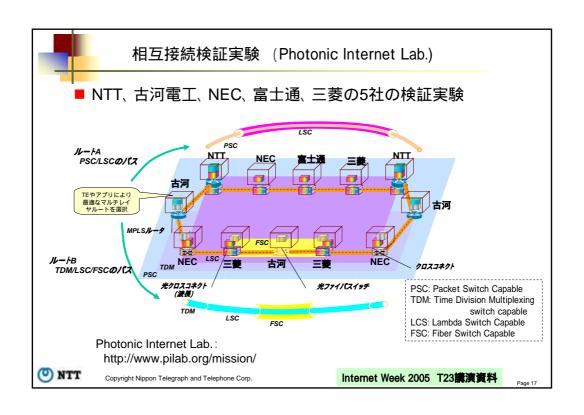

Copyright Nippon Telegraph and Telephone Corp.

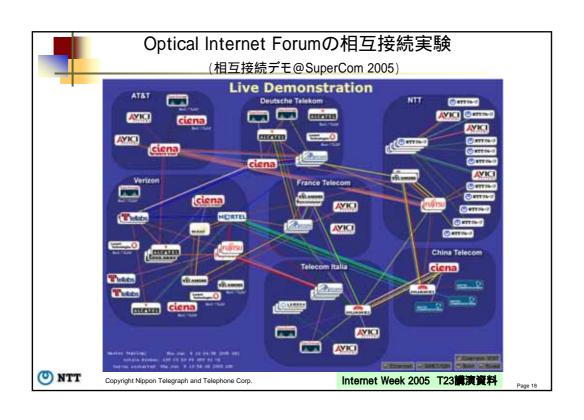
GMPLS技術による新サービスの創出

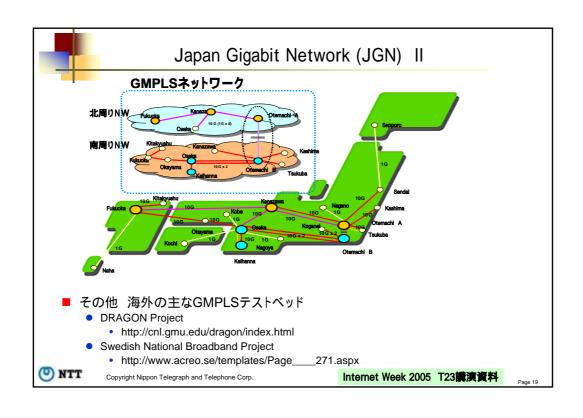
- 新信頼性クラスサービス
 - 低信頼クラス リストレーション (予備系を共有)
 - 既存クラス プロテクション (信号を別経路にコピーして転送)
 - 高信頼クラス プロテクションに失敗したら、

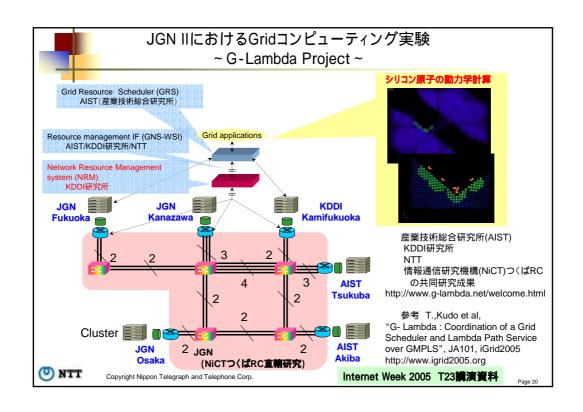

新しい経路を探索して動的にパスを救済

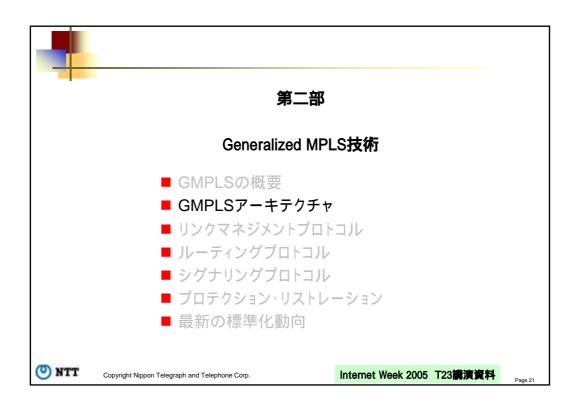

- Layer-1 VPNサービス
 - 仮想的な自分専用の広域光回線
 - グリッドコンピューティングとの親和性 (サイエンスの世界からビジネスグリッドに進展?)

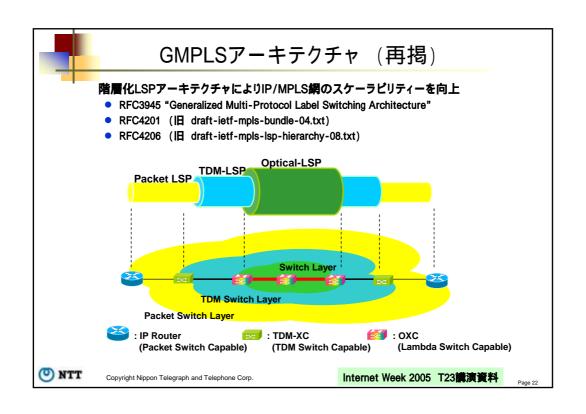

O NTT

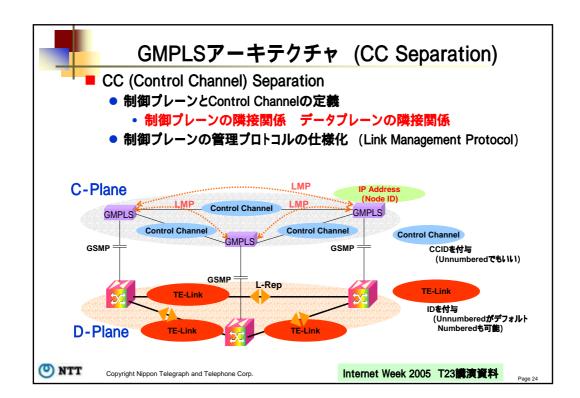

Copyright Nippon Telegraph and Telephone Corp.

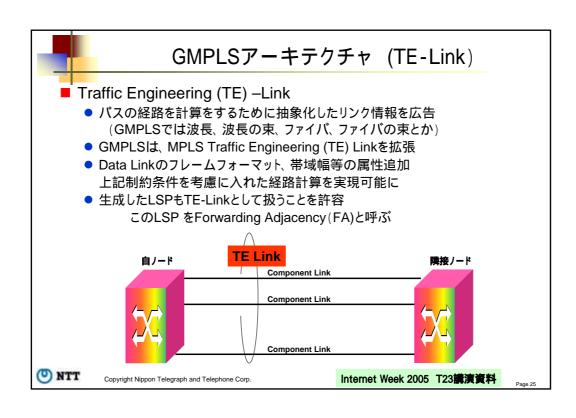

Internet Week 2005 T23講演資料

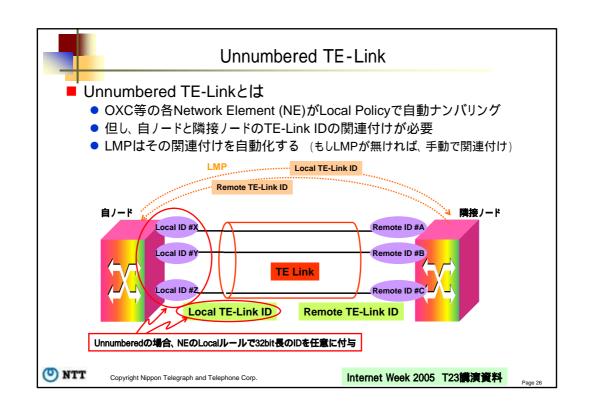


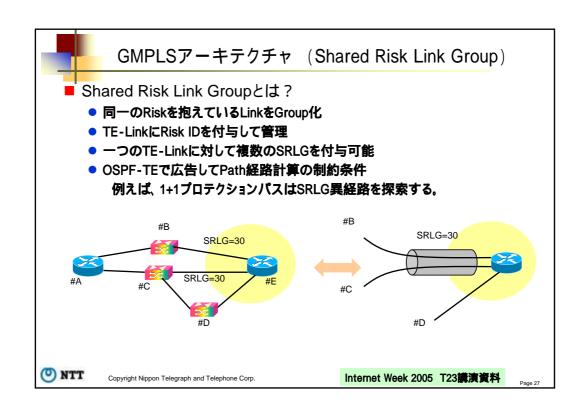


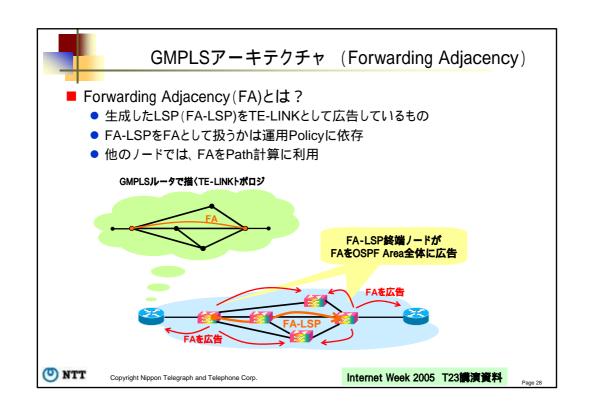


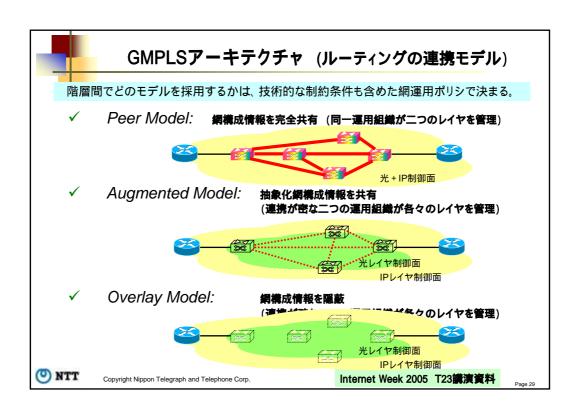

GMPLSアーキテクチャ (Switching Interface)


- 複数のInterface Typeを定義
 - Packet Switch Capable (PSC) interface
 - IPヘッダ、MPLS Shimヘッダを認識してSwitchingするノードのインタフェース
 - Layer-2 Switch Capable (L2-SC) interface
 - FrameやCellヘッダを認識してSwitchingするノードのインタフェース
 - Time-Division Multiplex Capable (TDM) interface
 - タイムスロットを認識してSwitchingするノードのインタフェース
 - Lambda Switch Capable (LSC) interface
 - 波長を認識してSwitchingするノードのインタフェース
 - Fiber Switch Capable (FSC) interface
 - 空間を認識してSwitchingするノードのインタフェース
- LSPは同一TypeのInterface間でのみ生成可能




Copyright Nippon Telegraph and Telephone Corp.


Internet Week 2005 T23講演資料



GMPLSアーキテクチャ (Generalizedシグナリング)

- シグナリング機能の主なGMPLS拡張
 - Generic Label Request
 - 帯域に加えて、Encoding Type(フレームフォーマットとか)
 - Bi-Directional LSP Control
 - 上下方向のLSPを同時に生成
 - Explicit Label Control
 - 上流ノードから選択するLabelを明示
 - LSP Administrative Status Handling
 - 警報通知抑止もしくは抑止解除設定
 - Protection Information
 - プロテクション機能、現用か予備かの識別
 - Failure Notification
 - LSPの終点から始点への異常通知

O NTT

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

第二部

Generalized MPLS技術

- GMPLSの概要
- GMPLSアーキテクチャ
- リンクマネジメントプロトコル
- ルーティングプロトコル
- シグナリングプロトコル
- プロテクション・リストレーション
- ■最新の標準化動向

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

Dogo 21

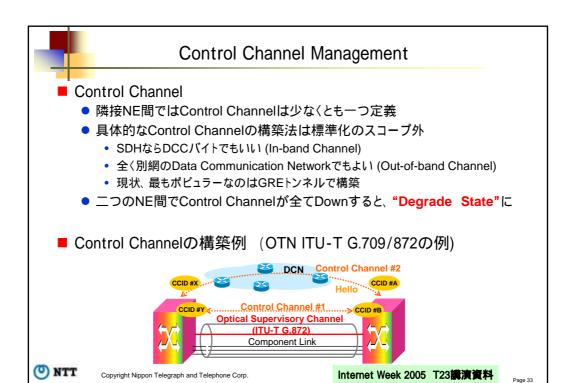
LMPの概要

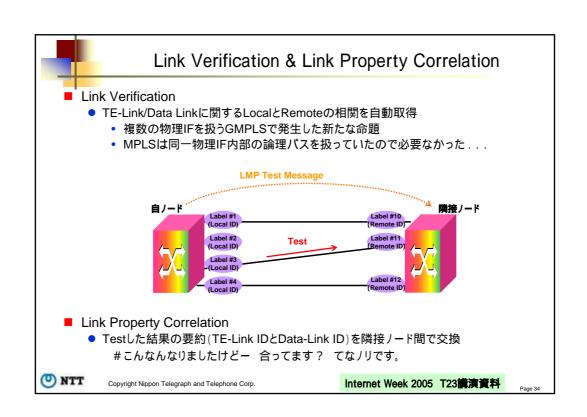
■ 主な関連ドラフト

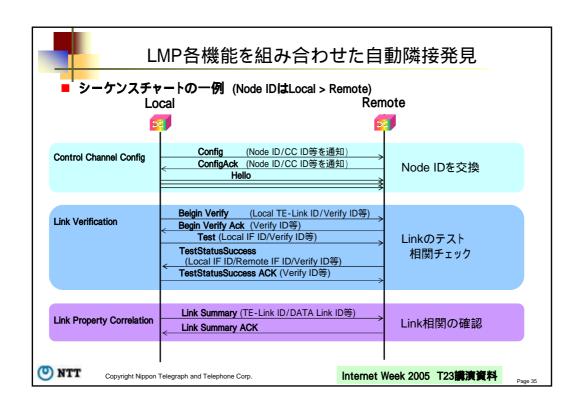
- RFC4204 (旧 draft-ietf-ccamp-lmp-10.txt)
- RFC4209 (旧 draft-ietf-ccamp-lmp-wdm-01.txt)
- RFC4207 (旧 draft-ietf-Imp-test-sonet-sdh-04.txt)

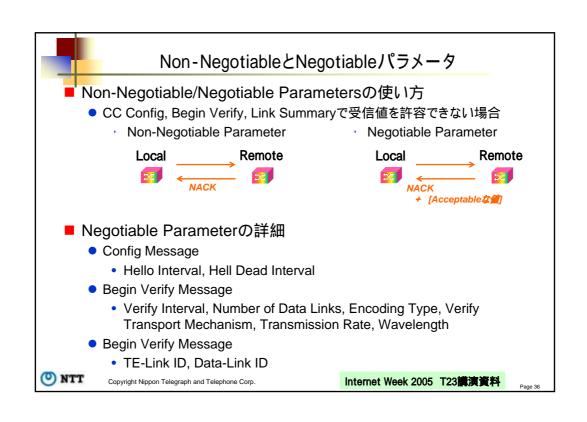
■ 4つの機能

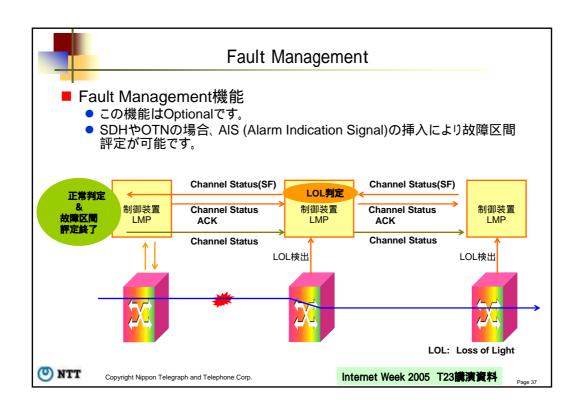
- Control Channel Management
 - Control Channel状態管理、LMP Helloの交換
- Link Verification
 - Component Linkの自動試験
 - Local IFとRemote IFの相関関係の調査
- Link Property Correlation
 - Local IFとRemote IFの相関関係の確認
- Fault Management
 - 故障区間評定機能

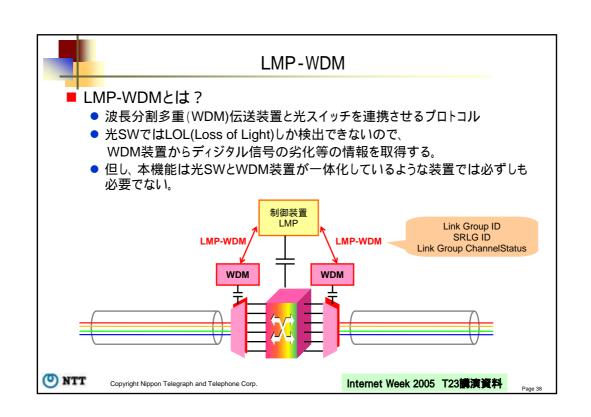

Control Channel TE-Link Data-Link の状態遷移を定義 &状態管理

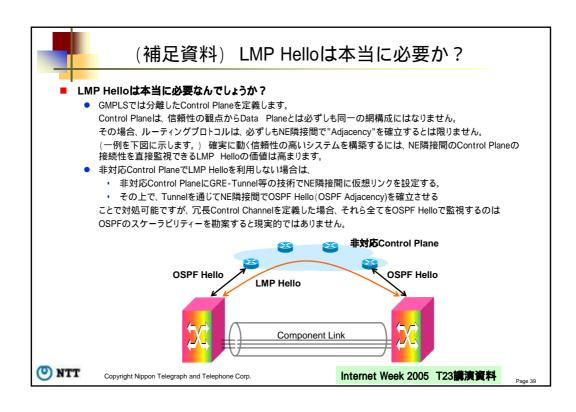


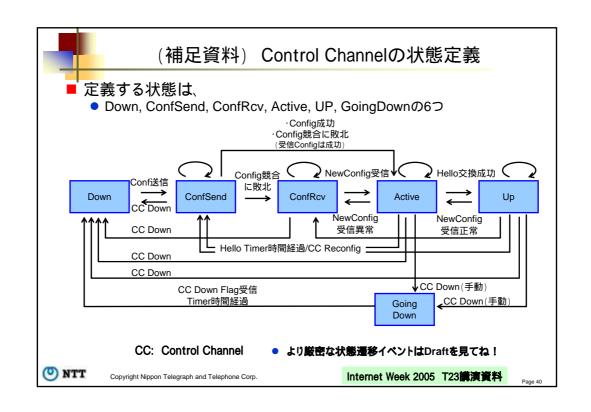

O NTT

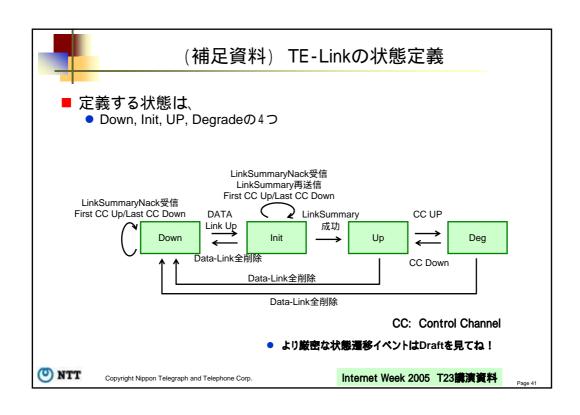

Copyright Nippon Telegraph and Telephone Corp.

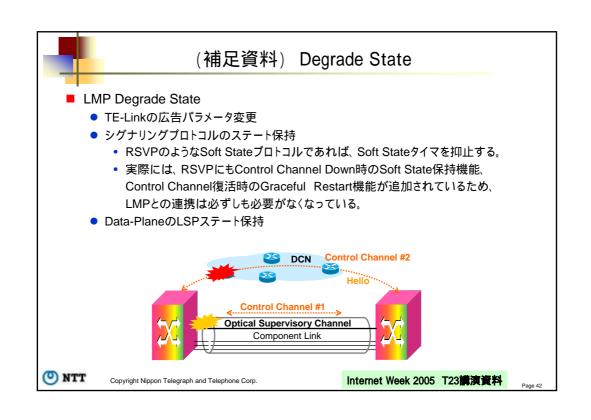

Internet Week 2005 T23講演資料

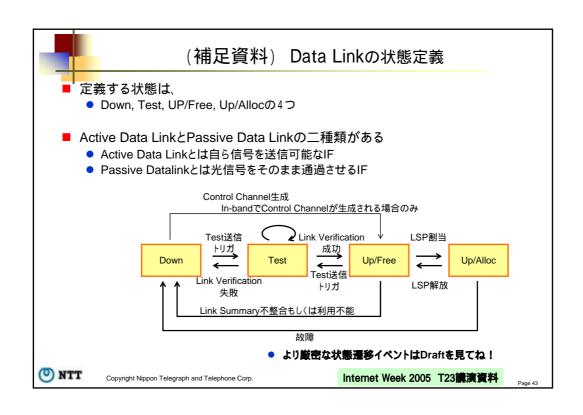


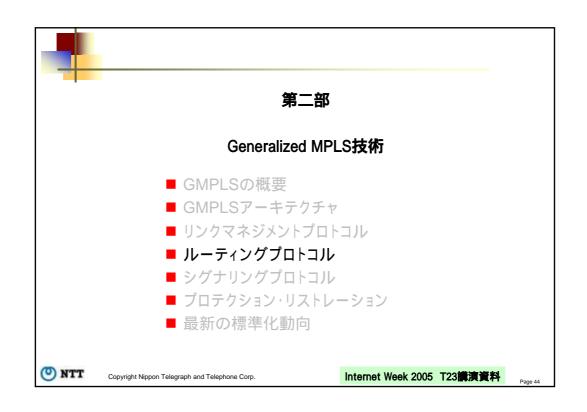


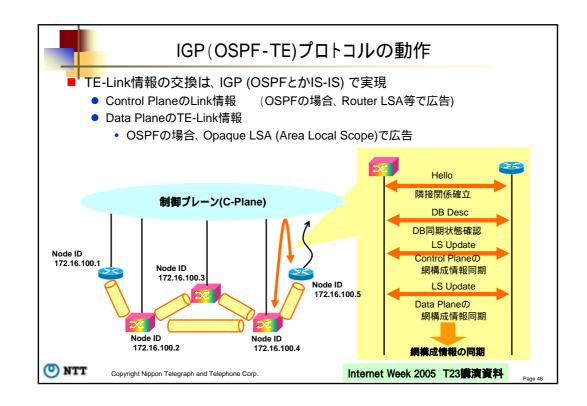


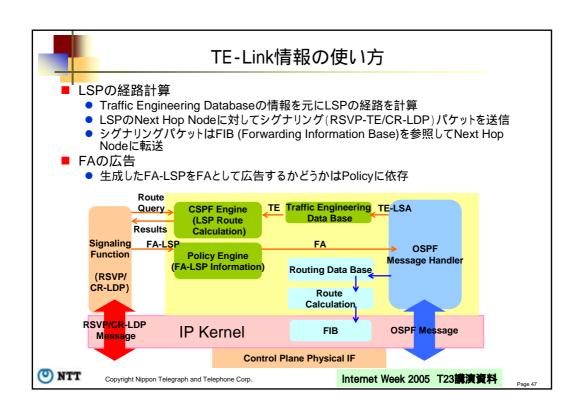


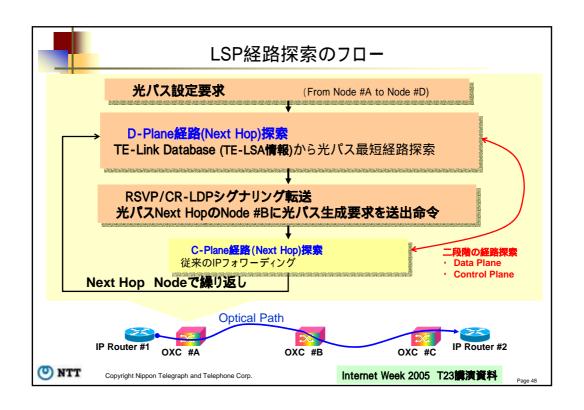




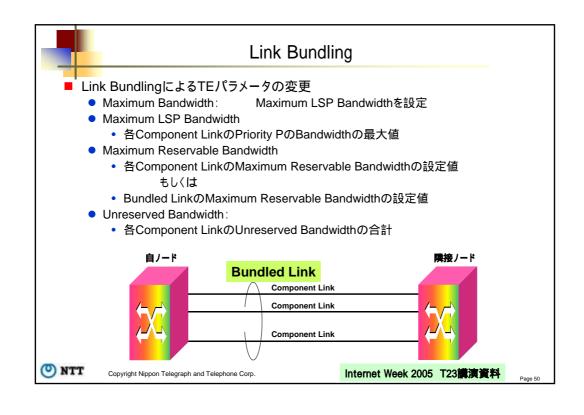



IGPのGMPLS拡張


- 主なIGP のGMPLS拡張関連ドラフト
 - RFC3630
 - RFC4202 (旧 draft-ietf-ccamp-gmpls-routing-09.txt)
 - RFC4203 (旧 draft-ietf-ccamp-ospf-gmpls-extensions-12.txt)
- ルーティングプロトコルのGMPLS拡張
 - LSPの経路を計算するには、下記の情報が必要
 - 帯域幅だけでなくData-LinkのEncoding Type(POSかのフレームフォーマット等)
 - Data-Plane信号フレームの収容能力(Adaptation Capability)の把握
 - 例えば、SDH VC-3/VC-4の両者を収容可能とか

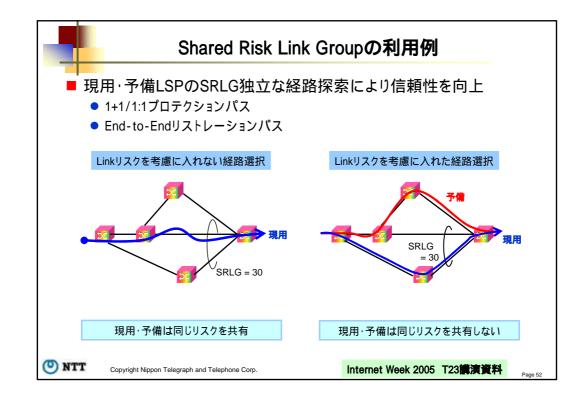


Copyright Nippon Telegraph and Telephone Corp.


Internet Week 2005 T23講演資料

		TE-Link広告情報(の実際	
•	TE-Linkの情 Sub-TLV Type	写 平収 名称	植	備考
ŀ	1	Link Type	1: PtoP Link	MD -9
ŀ	2	Link ID	32bit Value	
	3	Local Interface IP Address	32 bit Value	Numberedで使用
ŀ	4	Remote Interface IP Address	32 bit Value	Numberedで使用
	5	Traffic Engineering Metric	32 bit Value	
	6	Maximum Bandwidth	32 bit Value	
	7	Maximum Reservable Bandwidth	32 bit Value	
ľ	8	UnReserved Bandwidth	32 bit Value	
ľ	9	Resource Class/Color	32 bit Value	
	11	Local/Remote If Index	32 bit Value *2	GMPLS拡張 Unnumberedで使用
Ī	14	Link Protection Type	8 bit Value	GMPLS拡張
	15	Interface Switching Capability Descriptor	Variable	GMPLS拡張
	16	Shared Risk Link Group	Variable	GMPLS拡張
NTT	Copyright Nippon Te	elegraph and Telephone Corp.	Internet Week 2	005 T23講演資料

Interface Switching Capability Descriptor (ISCD)


- Interface Typeの記述子
 - Switching Type (8bit)
 - PSC, L2-SC, TDM-SC, LSC, FSC
 - Encoding Type (8bit)
- Interface Typeと要求Label種別の関係

[PSC, TDM]	PSC-TDM間TEリンク	Time Slot Label
• [PSC, LSC]	PSC-LSC間TEリンク	Lambda Label
• [PSC, FSC]	PSC-FSC間TE-Link	Port Label
[TDM, LSC]	TDM-LSC間TE-Link	Lambda Label
[TDM, FSC]	TDM-FSC間TE-Link	Port Label
• [LSC, FSC]	LSC-FSC間TE-Link	Port Label

O NTT

Copyright Nippon Telegraph and Telephone Corp

Internet Week 2005 T23講演資料

Inter-Areaに向けた課題

■ お気づきの方はいらっしゃると思いますが、 TE-LSAはArea Local Scopeで広告されます。 Inter AreaのLSP経路計算はどうするのでしょうか?

只今、IETFでHot Issueになっています。

Copyright Nippon Telegraph and Telephone Corp

Internet Week 2005 T23講演資料

Dogo E2

第二部

Generalized MPLS技術

- GMPLSの概要
- GMPLSアーキテクチャ
- リンクマネジメントプロトコル
- ルーティングプロトコル
- シグナリングプロトコル
- プロテクション・リストレーション
- ■最新の標準化動向

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

シグナリングプロトコルのGMPLS拡張

- GMPLS拡張はRSVP-TEとCR-LDPに関してRFC化
 - ベンダの実装は現状RSVP-TEが多数派
 - 本講演も以下、RSVP-TEを中心にご説明します。
- 主なシグナリング機能のGMPLS拡張関連ドラフト
 - RFC3471 Generalized Multi-Protocol Label Switching (GMPLS)

Signaling Functional Description

RFC3472 Generalized Multi-Protocol Label Switching (GMPLS)

Signaling Constraint-based Routed Label Distribution

Protocol (CR-LDP) Extensions

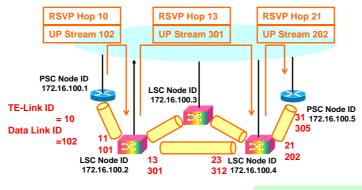
RFC3473 Generalized Multi-Protocol Label Switching

(GMPLS)Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions

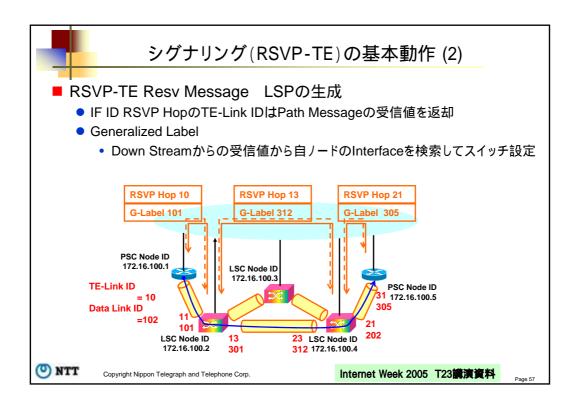
RFC3946 Generalized Multiprotocol Label Switching Extensions

for SONET and SDH Control (RFC 3946)

draft-ietf-ccamp-gmpls-g709-09.txt


Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料


シグナリング(RSVP-TE)の基本動作 (1)

- RSVP-TE Path Message LSPの資源予約
 - リソースを予約するTE-LinkはIF ID RSVP Hop Objectで指定
 - Generalized Label Requestで予約しようとするLSPの種別を指定
 - TE-Link Upstream LabelでBi-Directional LSPであることを明示
 - 各NEは受信値から自ノードのLocal TE-Link ID/Data Link IDを検索して資源予約

O NTT

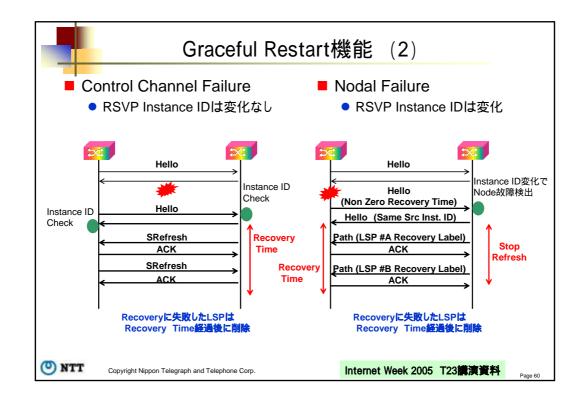
Copyright Nippon Telegraph and Telephone Corp.

Generalized Label Requestについて

- Generalized Label Request
 - Encoding Type
 - LSPを生成しようとするTE-Link両端のIF Typeから選択
 - Packet, Ethernet, SDH/SONET, Lambda, Fiber等 全11種類
 - Switching Type
 - 生成しようとするLSPのSwitching Type
 - G-PID
 - ペイロードフォーマットを指定
 - 例えば POSとか、他のHDLC over SONETとか
 - POS, ATM mapping, Ethernet等 全46種類
- LSP Bandwidthは、SENDER TSPEC Objectで指定

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料


Graceful Restart機能 (1)

- Graceful Restart機能
 - RSVP-TEはソフトステートプロトコル
 - Control Planeの故障によりLSPが自動消滅することが有りえる。
 - これはバックボーンネットワークでは耐え難い仕様
 - Control Plane故障時にState保持が可能なように機能を追加
- RSVP Helloメッセージの拡張
 - Restart Cap Objectの定義
 - Restart Time
 - RSVP Hello異常検出後、Forwarding Stateを保持する時間
 - Recovery Time
 - RSVP Hello異常回復検出後から状態同期処理完了までの制限時間

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

その他 RSVP-TE機能拡張

- Admin Status制御
 - LSP生成時はAdmin Status Bit = 1 (警報抑止)
- Notifyメッセージ
 - Path Error/Resv Errorメッセージとは異なり、Error情報をTargetに直接転送
- Label ERO/RROオブジェクト
 - 始点側で利用するLabelを明示的に指定
 - 終点側から始点(さらには、始点から終点)に確保したLabelを通知
- Label Setオブジェクト
 - LSP資源予約時に始点側で許容可能なLabel値を終点側に通知
 - 光パス生成用の拡張
- Suggested Labelオブジェクト
 - 始点側で利用するLabelを推奨

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

RSVP-TEプロトコルの主なGMPLS拡張

- Message Typeの拡張
 - Notify message (Message Type = 21)
- Message Objectの拡張

Class-Num	C-Type	Object 名称	值	備考
3	3	IF_ID RSVP HOP	Encoding, Switching Type	
19	4	Generalized Request	Encoding, Switching Type, G-PID	
16	2	Generalized Label		
34	1)	Recovery Label	Label	1) C-Typela
35	1)	Upstream Label	Label	Generalized Labelと同一
36	1	Label Set	Label群	
129	1)	Suggested Label	Label	1)
131	1	Restart Cap	Restart/Recovery	
195	1	Notify Request	IPv4 Address	
196	1	Admin Status	Admin Up/Down, Test	

O NTT

Copyright Nippon Telegraph and Telephone Corp.

第二部

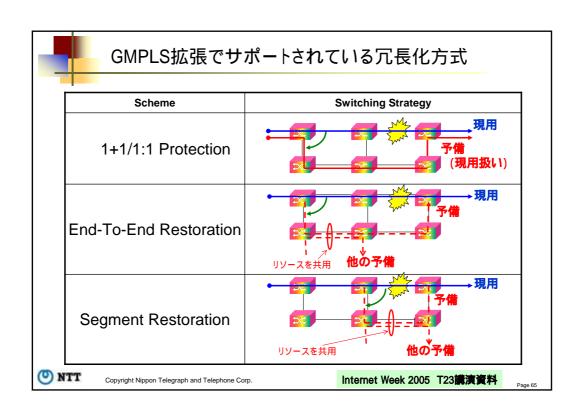
Generalized MPLS技術

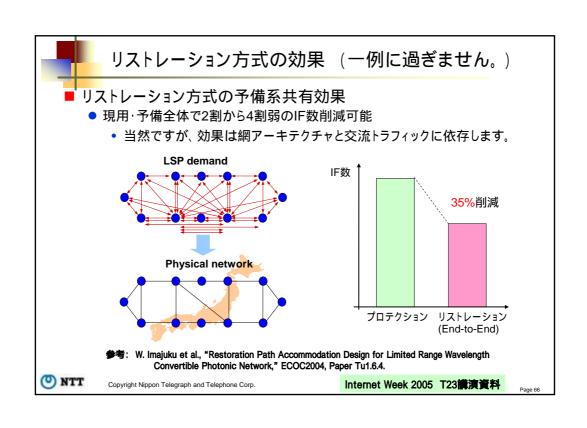
- GMPLSの概要
- GMPLSアーキテクチャ
- リンクマネジメントプロトコル
- ルーティングプロトコル
- シグナリングプロトコル
- プロテクション・リストレーション
- ■最新の標準化動向

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

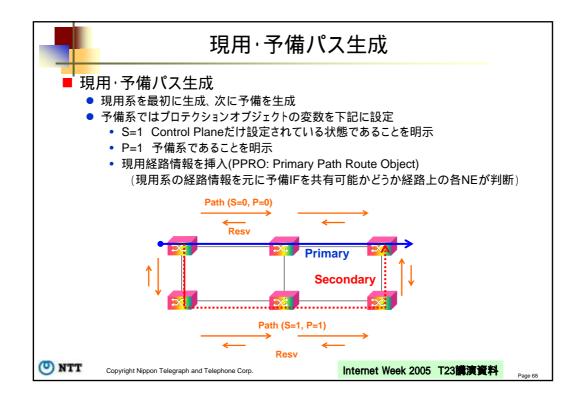
Dogo 62

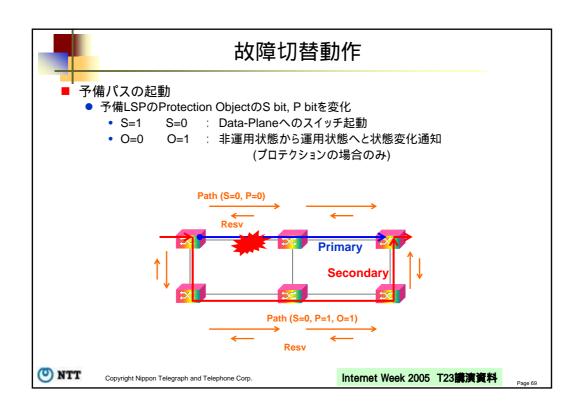

GMPLS Based Recoveryの概要

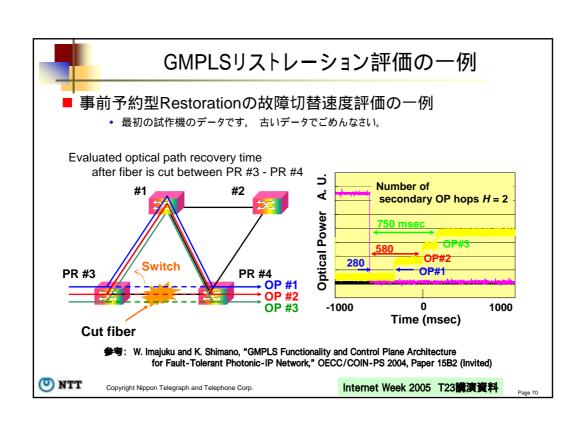

- GMPLS Based Recoveryに関するドラフト
 - draft-ietf-ccamp-gmpls-recovery-terminology-06.txt
 - draft-ietf-ccamp-gmpls-recovery-analysis-05.txt
 - draft-ietf-ccamp-gmpls-recovery-functional-04.txt
 - draft-ietf-ccamp-gmpls-recovery-e2e-signaling-03.txt
 - draft-ietf-ccamp-gmpls-segment-recovery-02.txt
- MPLS Fast Reroute (RFC4090)との主な違い
 - MPLSの切替はControl PlaneではなくForwarding Planeで実施 GMPLS Based Recoveryは、Control Planeで切替可能なように拡張
 - 機能拡張は主にシグナリング
 - 予備LSPへの故障切替
 - 現用LSPへの切戻し
 - ロックアウト (切替抑止)

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料


シグナリングプロトコルの主な拡張


- Protectionオブジェクト
 - 故障救済方式の種別を明示
 - Unprotected
 - Full Rerouting
 - · Rerouting without Extra Traffic
 - 1:N Protection with Extra Traffic
 - 1+1 Unidirectional
 - 1+1 Bi-directional
 - LSPがPrimaryかSecondaryかを明示
 - リストレーションの予備の場合、他の予備とLabelを共有
 - LSPがPrimary選択状態か、Secondary選択状態かを明示
- ASSOCIATIONオブジェクト
 - 現用LSPと予備LSPの関連付け



Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

第二部

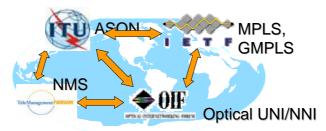
Generalized MPLS技術

- GMPLSの概要
- GMPLSアーキテクチャ
- リンクマネジメントプロトコル
- ルーティングプロトコル
- シグナリングプロトコル
- プロテクション・リストレーション
- 最新の標準化動向

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料

Dogo 71

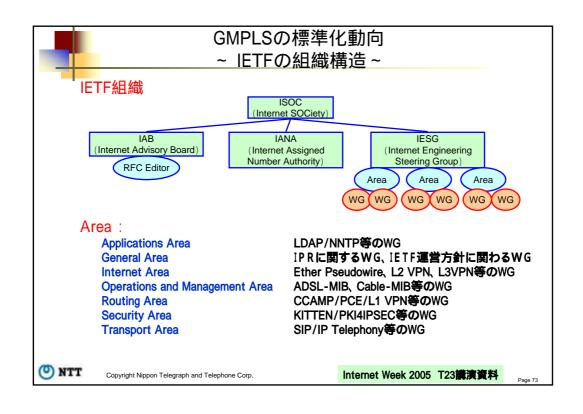

GMPLS関連技術の標準化動向 ~ 各標準化団体の関係 ~

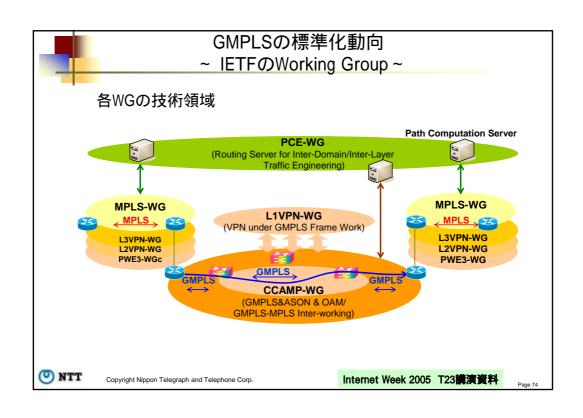
■ ITU-T (SG13, SG15)

UNI, I-NNI, Inter-carrier E-NNIのRequirements, Architecture (ASON)が中心プロトコルニュートラルな仕様を制定

■ IETF (CCAMP, PCE, L1-VPN)

I-NNIのプロトコル(GMPLS)を制定、UNIにも触手を伸ばしている。 シグナリング(RSVP-TE)、ルーティング(OSPF, IS-IS)、リンク管理(LMP)

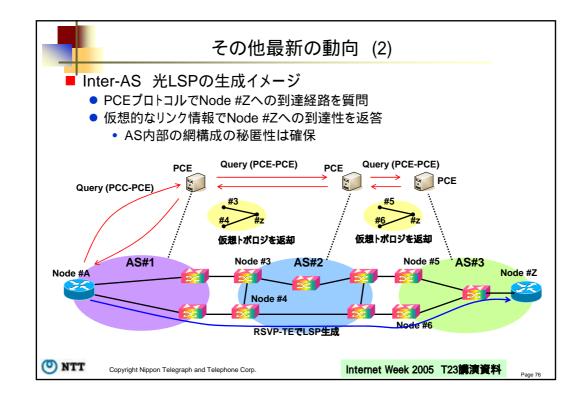



- OIF
 - UNIのRequirements, Architectureの策定が中心
 - UNI 1.0, UNI1.0R2策定、UNI 2.0策定中、Intra-carrier E-NNI策定中

O NTT

Copyright Nippon Telegraph and Telephone Corp.

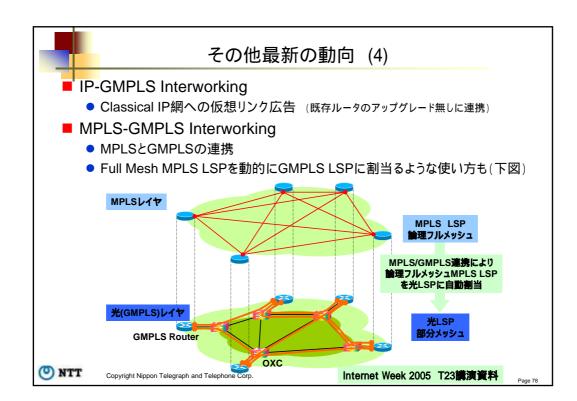
Internet Week 2005 T23講演資料


その他最新の動向 (1)

- Path Computation Element (PCE)
 - 目的
 - Inter-Area/AS/Layer Traffic Engineering (LSP経路計算)の実現
 - アーキテクチャ
 - LSR (Label Switch Router)の外部にPCEを配備可能なアーキテクチャ
 - IGP Area単位に配備(冗長PCEは当然あり)
 - 集中的な経路計算
 - 分散的なアプローチで解決が困難な用途に適用
 - メリット
 - CPUパワーを消費する複雑な制約経路計算が可能に
 - キャリヤにとっては自身の運用ポリシーの反映が容易に

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料



その他最新の動向 (3)

- Layer 1 VPN
 - GMPLS-VPNのFrame Work、プロトコル拡張
 - Layer 1リソースのパーティショニング(仮想プライベートネットワーク)
 - Layer 1制御プレーンのマルチクライアント対応
 - PE (Provider Edge)デバイスのGMPLS化
- Multi-Layer Switching Capability制御 (Multi-Region NW制御)
 - Packet Switch/Lambda Switchの統合 / ードの制御とルーティング拡張
- VCAT/LCAS制御
 - SDH/SONET@Virtual Concatination /Link Capacity Adjustment Scheme (ITU-T G.7041/7042)のGMPLS制御によりTDM-LSPの動的容量可変制御を実現
- Ether VLAN制御
 - VLANをGMPLSで制御???

Copyright Nippon Telegraph and Telephone Corp.

まとめ

- Generalized MPLS技術
 - IP-NWのアーキテクチャを変える鍵の技術
 - 近未来シナリオ
 - 設備投資コスト削減
 - Layer 1での故障救済
 - » LSP Hierarchyでよりスケーラブルな制御を実現
 - » 予備系の共有によるファイバとルータIF投資の削減
 - オペレーションコスト削減
 - サービス網とバックボーン網のスムーズな連携
 - 将来のシナリオ
 - GMPLSとMPLSの連携からマイグレーションに進化
 - 論理Full Mesh LSPをトラフィックドリブンに光のLSPに動的に乗せ換え
 - = 動的光カットスルー制御の実現

Copyright Nippon Telegraph and Telephone Corp.

Internet Week 2005 T23講演資料