

Internet Registry allocation and assignment

Policies YOSHIKO OKAZAKI CHONG JPNIC

What is APNIC?

- Regional Internet Registry for the Asia Pacific

 one of three RIRs
- Not-for-profit, membership based
- Provides allocation and registration services
- Not operations forum
- Not standards development

Regional Registry areas

Registry hierarchy

APNIC organisation

- Membership is open
- Benefits of membership
 - use of resource registration services
 - use of resource allocation services
 - free attendance and voting at meetings
 - free attendance at training courses
 - participation in policy development
- <u>But</u> membership does not mean automatic or easier allocations of resources

APNIC core services

- Resource allocation
 - IP allocations
 - approval of IP assignments
 - AS number assignments
- Resource registration
 - APNIC database objects
 - person, inetnum, AS number, domains etc
- DNS management
 - in-addr.arpa domains

APNIC support services

- DNS management
 - secondary for ccTLDs
- Representation
 - regional representation at Internet meetings
- Coordination
 - ARIN, RIPE NCC, IANA
- Information dissemination
 - APNIC meetings
 - web and ftp site
- Training courses (from 1999)

Policy documentation

Policies for Address Space Management in the Asia Pacific Region

http://www.apnic.net/policydraft.html

RFC 2050: Internet Registry Allocation Guidelines

http://ftp.apnic.net/ietf/rfc/rfc2000/rfc2050.txt

Goals of public address space management

Uniqueness

public hosts must be uniquely identifiable by IP address

Registration

- ensures uniqueness of address space
- ensures users of resources can be found
 - public registry provided

Aggregation

- hierarchical and topological distribution
 - -limits growth of routable prefixes

Goals of public address space management (cont'd)

Conservation

 addresses to be distributed on the basis of demonstrated need

Fairness

- addresses to be distributed fairly
- policies to be applied equitably to all

Conflict of goals acknowledged

- aggregation vs conservation
- needs of individuals to be balanced with needs of Internet community

ISP Address Request Form (apnic-065)

 ftp://ftp.apnic.net/ apnic/docs/isp-address-request

Addressing plan

components of the network

- dial up
 - analogue dialup modems (initially)
 - 2 PRI dial up pools x2 (later)
 - 8 PRI dial up pools x2 (even later).
- servers & PCs
 - mail, DNS, web.
 - secondary servers redundancy (later)
 - operations management servers, helpdesk PCs

routers

- loopback router interfaces
- WAN ports
- customer connections

Network plan example

· Starting off

- Key elements
 - one loopback interface per assigned router /32
 - WAN point to point /30
 - LANs can have address space they require
 - 'ip unnumbered' to upstream ISP.

Network plan example

•6 months later

Network plan

12 months total

Addressing plan

Addressing plan for network-plan

network-plan:	0.0.0.0	255.255.255.0	256	16/60/240	8 PRI dial up modems
network-plan:	0.0.1.0	255.255.255.0	256	0/60/240	8 PRI dial up modems
network-plan:	0.0.2.0	255.255.255.192	64	10/16/35	ops management servers
network-plan:	0.0.2.64	255.255.255.192	64	15/25/40	customer support PCs
network-plan:	0.0.2.128	255.255.255.240	16	5/11/11	mail, DNS, web servers
network-plan:	0.0.2.142	255.255.255.240	16	0/8/8	secondary DNS & Mail servers
network-plan:	0.0.2.158	255.255.255.240	16	4/6/12	loopback router interfaces
network-plan:	0.0.2.174	255.255.255.252	4	2/2/2	router WAN ports (x8)

Additional information

Deployment plan

- to support large network growth
 - describe type of equipment, planned operational date, location, communication circuits, and bandwith

Network topology map

- shows network structure
- -can also show POP design

Hardware details

equipment specification, number of ports, etc.

Service details

- details of how implement services (eg, web hosting)
- dial up services

- Consistency with policy goals
 - uniqueness
 - registration
 - aggregation
 - conservation
 - fairness

Technical information

- contributing APNIC member?
- variable length subnet masks used?
- address space non-portable?
- private address space considered?

Addressing plans - general

- is all address space declared?
 - -use 'whois' to research previous allocations
- is 80% used up?
- are subnet masks real?
- are assignments classless?
 - -non-CIDR boundary assignments can be repeated on form
- is it efficient?
 - -can addresses be conserved with different subnet mask?
- what are the usage rates
 - -how much was used in what time frame?

Customer-network fields

- what is the prefix distribution?
- are customer assignments recorded accurately in database?
- are the cust-network name & the network name the same?

Infrastructure fields

- are efficient technologies used?
 - research archived history
- has 80% of address space been used?
 - sum of infrastructure and cust-network fields is equal to the total of used address space

Network-plan fields

- -is plan detailed enough?
- is plan efficient?
- are dynamic technologies planned?
- do customer projections match infrastructure plans?

Additional information supplied

- –does deployment plan match information in network-plan fields?
- does network topology description correlate with addressing plan?
 - larger requests require additional documentation

· Other considerations

- -is the customer renumbering?
- -what are the timeframes?

Considerations

Assignment

- 'Assignment window' 0
- determines maximum amount of address space a LIR can assign without approval from APNIC
- increases when procedures & criteria are understood

Allocation

1

'Slow start' /19

- determines an initial allocation size that is consistent and fairly applied to all
- increases when usage rate increases

Considerations

Motivation

- support the LIR during start up
- familiarise the LIR with APNIC procedures
- standardise criteria for request evaluation
- treat everyone fairly

Assignment Window

Increasing responsibilty of LIR

- Most impact during start-up phase
 - start at minimum
- Not raised automatically

Assignment window

Assignment and allocations

- LIR can only make <u>assignments</u> not allocations
- Update local records
 - archive original documents
- Clarify status of address space
 - 'Provider Aggregatable' or 'Provider Independent'
 - -more explanation next slide...

PA and PI assignments

- Provider Aggregatable (PA)
 - -customer uses addresses out of registry's allocation
 - good for minimising size of routing tables
 - but customer has to renumber if changing ISP
- Provider Independent (PI)
 - customer gets separate range of addresses
 - customer keeps addresses when changing ISP
 - customer may experience routing problems
 - -bad for routing tables
- APNIC requires 'Provider Aggregatable'

Current operational problems

- growing number of routes
- many prefixes announced
- the 'swamp'
- routing instability

What can ISPs do?

- aggregate & filter
- dampen flapping routes
- renumber
- NAT