T28: ワイヤレス・セキュリティー

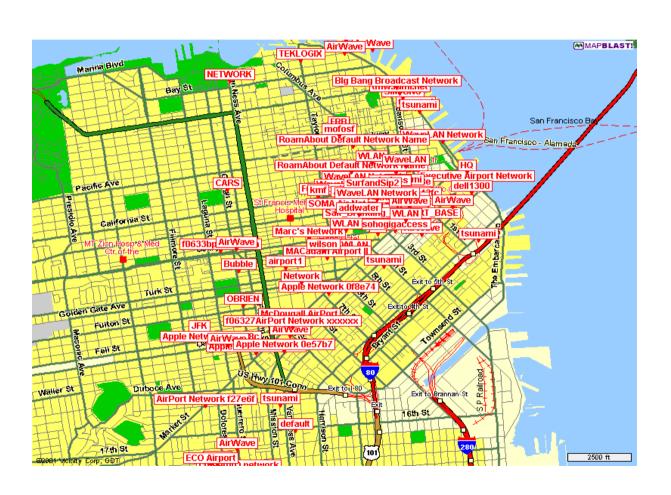
WEP, 802.1X, WPA, そして 802.11i へ

Internet Week 2003, Yokohama

進藤 資訓 株式会社データコントロール CTO shindo@datacontrol.co.jp

開口一番

- ワイヤレスは危ないか?
 - 危ない!
 - ○もし、正しく使わなければ・・・。
- なぜ危ないか?
 - よく分からない!?
- どれくらい危ないか?
 - よく分からない!?
- どうすれば防げるか?



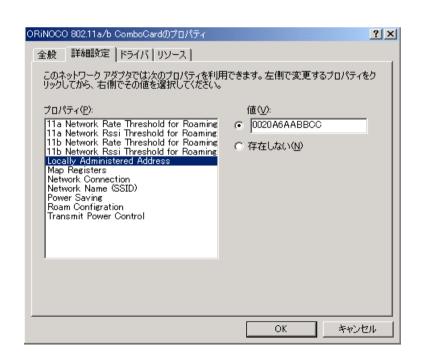
セキュリティー

- o 認証(Authentication)
- 許可(Authorization)
- 秘匿性(Confidentiality)
- o 完全性(Integrity)
- 否認防止(Non-repudiation)

攻擊(1) ~ War Driving ~

対策(1-1) ~ ESS-ID の隠蔽 ~

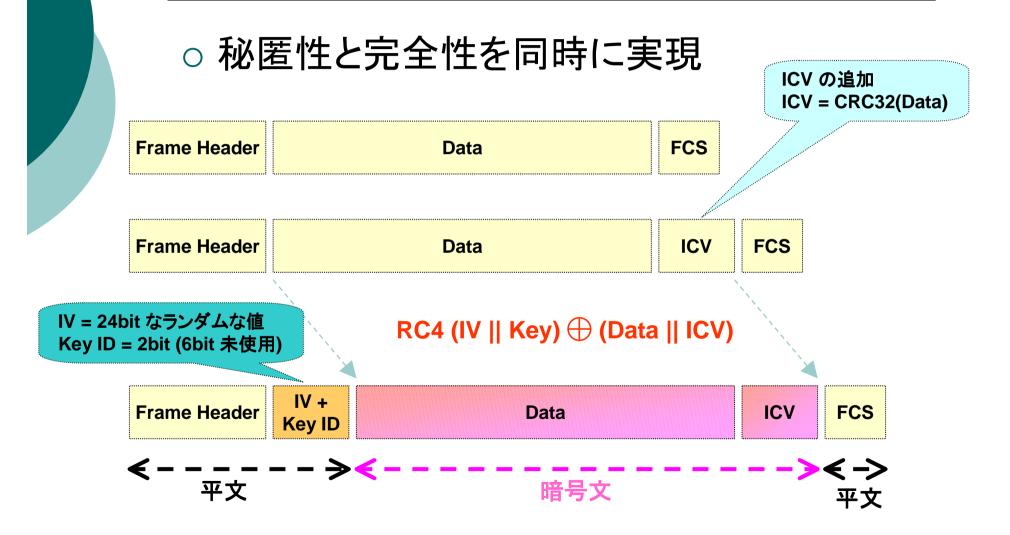
- ○呼び名は色々
 - Closed System or Network
 - ステルス機能
 - . . .
- 実装も色々
 - 802.11 のビーコンを止める
 - プローブリクエストに対して、
 - ○応答しない
 - 応答はするが、レスポンスに SSID は入れない
 - 自分の SSID に合致する場合のみ応答


対策(1-2) ~ MAC 認証 ~

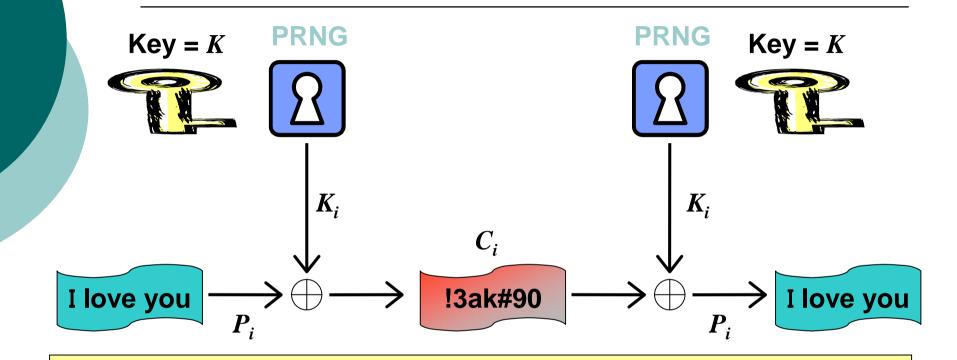
- 接続を許可する MAC アドレス(のリスト)を 設定
 - AP に静的に設定する
 - RADIUS 等のサーバーに設定する

攻撃(2) ~ 詐称(なりすまし)~

- MAC アドレスの詐称は簡単!
- 正規のMAC アドレスはワイヤレス上で簡単に見つけることができる!



ifconfig eth1 down # ifconfig eth1 hw ether 12:34:56:aa:bb:cc # ifconfig eth1 up


対策(2) WEP

- WEP (<u>Wired Equivalent Privacy</u>)
 - 秘匿性 (Confidentiality)
 - 完全性 (Integrity)
 - 認証 (Authentication)
- <u>What on Earth does this Protect?</u>

WEP 処理

Stream Cipher

Property 1:

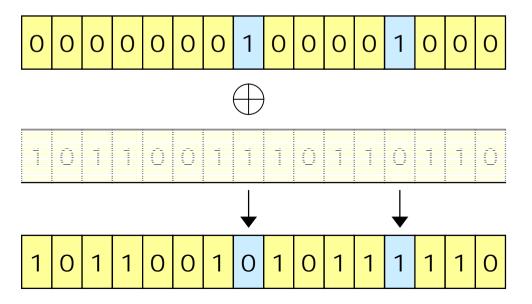
If

 $C_i = P_i \oplus K_i$ Then $P_i \oplus C_i = K_i$

Property 2:

If $C_1 = P_1 \oplus K_a$ and $C_2 = P_2 \oplus K_a$ Then $C_1 \oplus C_2 = (P_1 \oplus K_a) \oplus (P_2 \oplus K_a) = P_1 \oplus P_2$

WEPの問題点


- 鍵長が 40bit と短い
 - Brute Force で破れる。
 - 最近ではほとんどの場合長い鍵(e.g. 104 or 128 bits)が利用可能。
- ICV に CRC32 を用いている
 - ICVは暗号化対象ではあるが、CRC自体は暗 号的強度はない。
 - 鍵と組み合わされていない。
- ○一つの鍵を使い続ける
 - どんなに強力な暗号アルゴリズムでも1つの鍵を長く使うのは望ましくない。

WEPの問題点(cont'd)

- ○鍵の配布メカニズムがない
 - スケールしない。
- ○IV の空間が小さい(i.e. 24bit)
 - 扱い方が規定されていない。
 - フレームごとに1増やす場合、200 bytes/packet, 10% utilized で 14 時間で 再利用される。
- ○リプレイ攻撃に無力
- oFMS 攻撃

Bit Flipping Attack

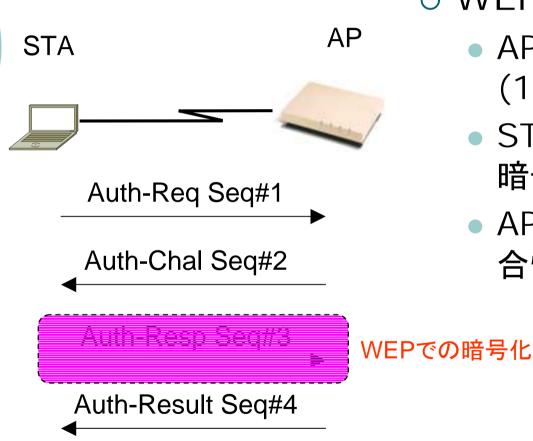
- CRC は XOR に対して線形である!
 - CRC (M XOR \triangle) = CRC (M) XOR CRC (\triangle)
- M 中の任意の bit を set したり、clear したり することはできないが、bit を反転させることは できる!

FMS 攻撃

- o S. Fluhrer, I. Mantin, A. Shamir, Aug. 2001
- Key Recovery
- 条件
 - 生成される RC4 stream の最初のバイトが判っていて、
 - IV がある種の条件を満たす場合、Key Byte を5%の確率でguessできる
 - 代表的 Weak IV: (B+3, Oxff, N)
- key の長さに<u>比例</u>しかしない!
- 4,000,000 ~ 6,000,000 パケットで 40bit WEP を解読できる
- 更なる最適化で 1,000,000 パケット程度で解読可能
 - 5Mbps, 200 bytes/packet で、3125 秒

RC4 は脆弱か?

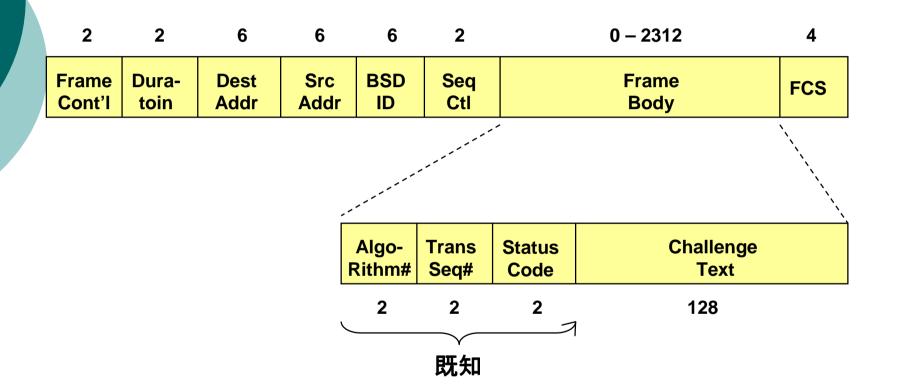
- 若干の脆弱性はあるが、一般的にはほとん ど問題ない
- WEP が脆弱なのは RC4 の使い方を少々 間違えたからである
- RC4 を正しく使えば安全
 - IV を MD5 や SHA1 でハッシュする
 - o例) SSL or TLS
 - 最初の数百バイト(例えば 256 バイト)を捨てる
 - o例) GTK over EAPOL

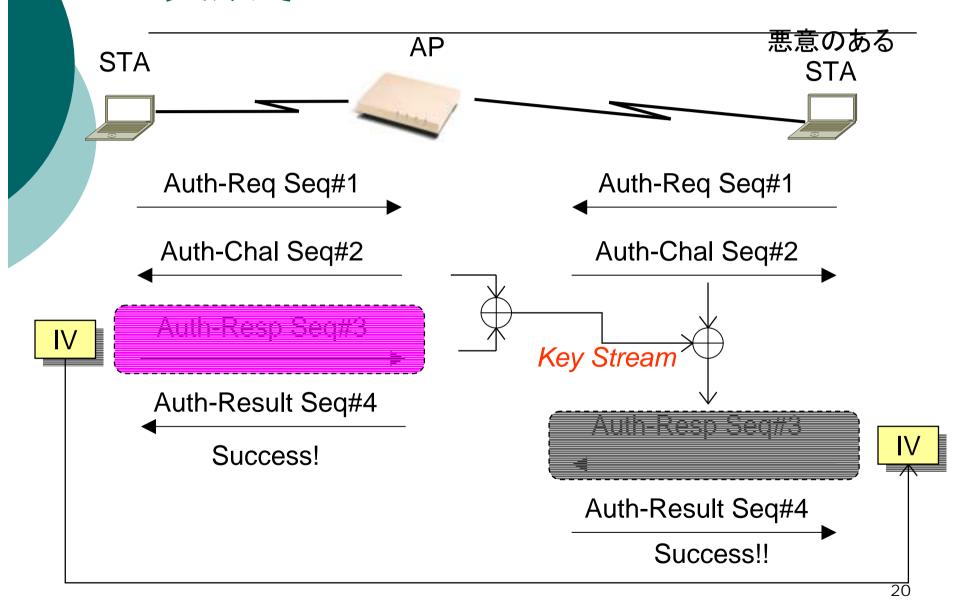

攻撃(3) ~ WEP Cracking ~

- AirSnort
 - http://airsnort.shmoo.com
- WEPCrack
 - http://wepcrack.sourceforge.net
- o bsd-airtools
 - http://dachb0den.com/projects/bsdairtools.html

対策(3-1)WEP plus

- Agere 802.11b Firmware 8.10 or later
 - Weak IV を避ける
 - 最初の IV をランダムに決める
- 0 メリット
 - FMS 攻撃は避けられる
- デメリット
 - IV の空間をさらに小さくする
 - チップセット依存


802.11 の認証


○ WEP を使う!

- AP は Challenge (128bytes) を送出
- STA はそれを WEP で 暗号化して AP へ送る
- AP はそのフレームの整 合性をチェック

802.11 Authentication Management Frame

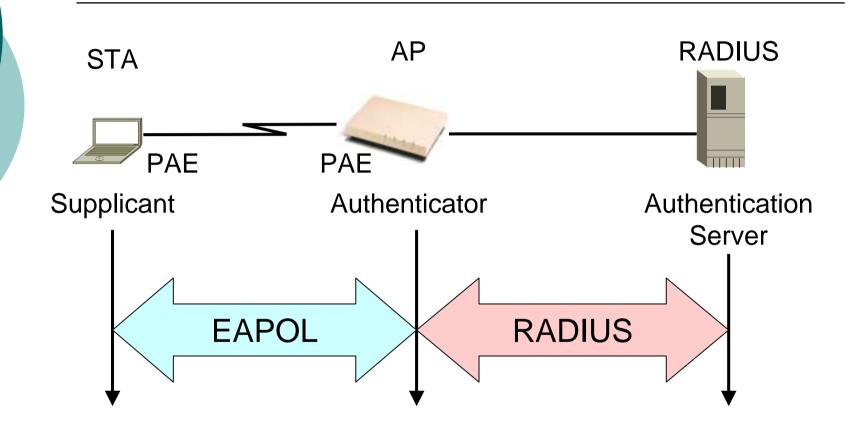
失敗その2

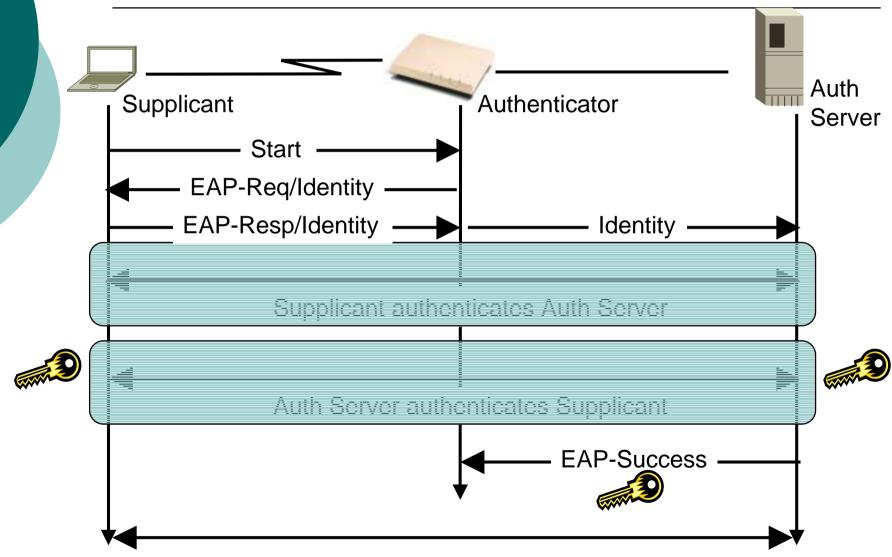
WEP is completely broken!!

秘匿性

完全性

認証




対策(3-2)802.1X

- Port-Based Network Access Control
- o a.k.a 802.1aa
- 認証を「ユーザーベース」できちんとしよう!
- 鍵配送の仕組みを提供しよう!
 - 管理上のスケーラビリティー
 - 暗号化方式の脆弱性を「和らげる」

802.1X の構成要素

802.1X の動き

TLS (Transport Layer Security)

- o TLS Version 1.0
 - a.k.a SSL version 3.1
- o Certificate ベース
- o なぜ TLS ??
 - 相互認証
 - セッション鍵
 - 広く受け入れられているから

EAP (Extensible Authentication Protocol)

- PPP から生まれたプロトコル
- 基本的に何でもあり!
 - 単純な Request Response 型のプロトコル
- この上で激しく色々なことができる

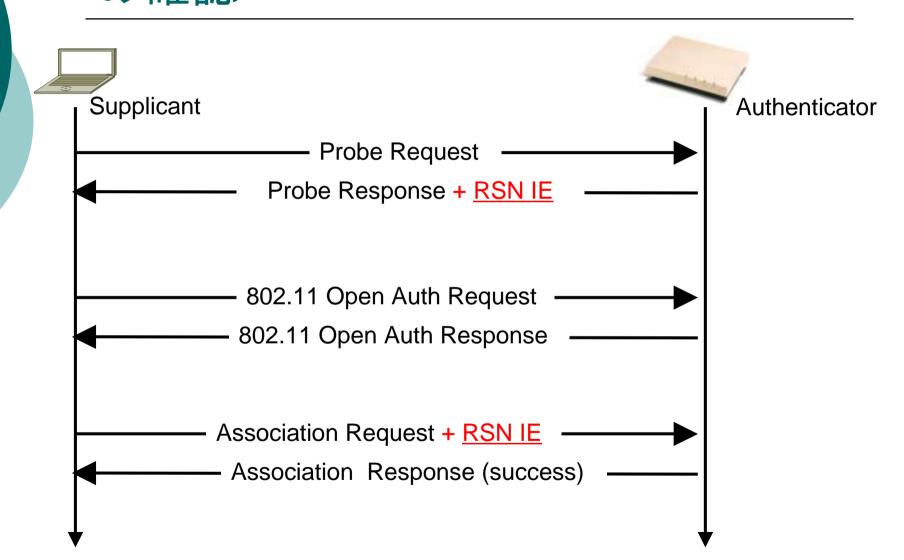
	MD5	(4)
	EAP-TLS	(13)
•	EAP-Cisco Wireless	(17)
•	EAP-TTLS	(21)
•	EAP-3Com Wireless	(24)
•	PEAP	(25)
	MS-EAP-Auth	(26)

EAP Type

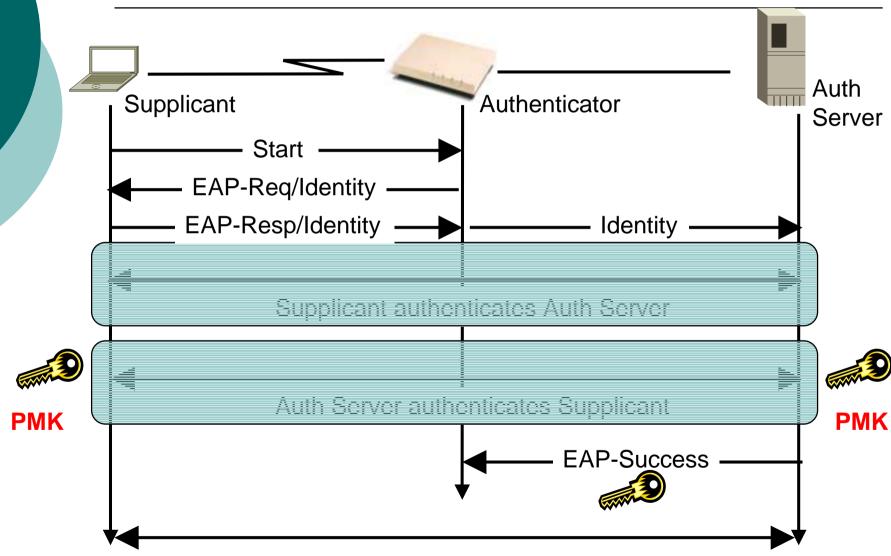
	EAP	Open/	Mutual Auth	Authentication Credentials		Key	User Name	BEC
	Type	Proprietary		Supplicant	Authenticator	Material	In Clear	RFC
	MD5	Open	No	Username/Pwd	None	No	Yes	1321
	TLS	Open	Yes	Certificate	Certificate	Yes	Yes	2716
	TTLS	Open	Yes	Username/Pwd	Certificate	Yes	No	IETF Draft
	PEAP	Open	Yes	Username/Pwd	Certificate	Yes	No	IETF Draft
	LEAP	Proprietary	Yes	Username/Pwd	None	Yes	Yes	NA

WPA の目標

- ○暗号的脆弱性の排除
- ユーザーベースの認証
- 鍵の配布をサポートすること
- 動的なユーザー・セッション・パケット毎の鍵を使用
- 認証サーバーを強要しないこと
- 2003年中に利用可能になること
- ソフトウェアアップグレード可能

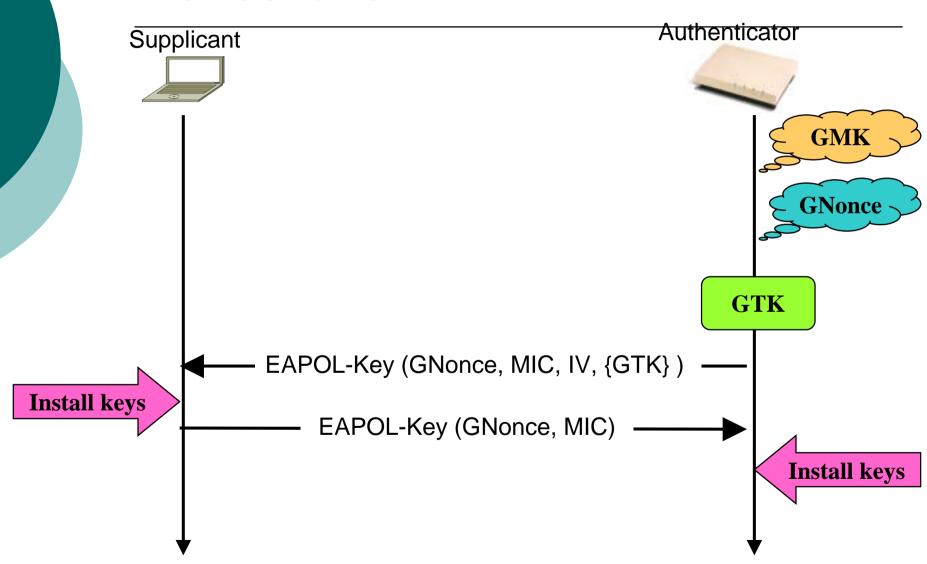

WPA (Wi-Fi Protected Access)

- 802.11i のサブセット
- ○認証
 - 802.1X + EAP
- 秘匿性(暗号化)
 - 802.1X 動的鍵配布
 - TKIP
- 完全性
 - Message Integrity Check (MIC) "Michael"

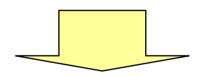

WPA ステップ

- アソシエーションとケーパビリティーの確認
- o 802.1X 認証と PMK (Pairwise Master Key)の配布
- o TK (Temporal Key)の導出
- GK (Group Key)の導出
- 暗号化および整合性チェック

アソシエーションとケーパビリティー の確認



802.1X 認証と PMK の配布

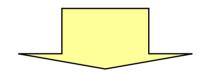

Temporal Key の導出 ~ 4 way handshake ~ **Authenticator** Supplicant PMK 🞆 **PMK SNonce ANonce EAPOL-Key (ANonce) PTK** EAPOL-Key (SNonce, MIC, RSN IE) **PTK** EAPOL-Key (ANonce, MIC, RSN IE) **Install keys** EAPOL-Key (SNonce, MIC) **Install keys** 33

Group Key の導出 ~ 2 way handshake ~

Pairwise Key Hierarchy (for TKIP)

Pairwise Master Key (PMK) 256 bits

Pairwise Transient Key (PTK) 512 bits


EAPOK-Key MIC Key 128 bits

EAPOL-Key Encryption Key 128 bits Temporal-Key 128 bits

Data MIC key 128 bits

Group Key Hierarchy (for TKIP)

Group Master Key (GMK) 128 bits

Group Transient Key (GTK)
256 bits

Temporal-Key 128bits

Data MIC key 128bits

PRF (Pseudo Random Function)

```
H-SHA-1(K, A, B, X)

\leftarrow HMAC-SHA-1(K, A \parallel 0 \parallel B \parallel X)

PRF- n(K, A, B) = PRF(K, A, B, n)

where n be 128, 192, 256, 384, or 512
```

```
PRF(K, A, B, Len)
for i \leftarrow 0 to (Len + 159) / 160 do
R \leftarrow R \parallel \text{H-SHA-1}(K, A, B, i)
return L(R, 0, Len)
```

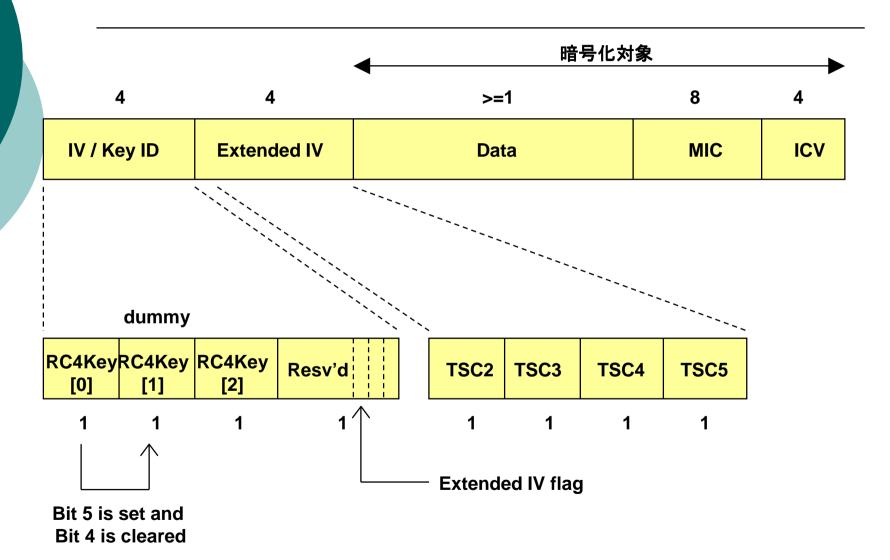
PRFの使用例

Nonce

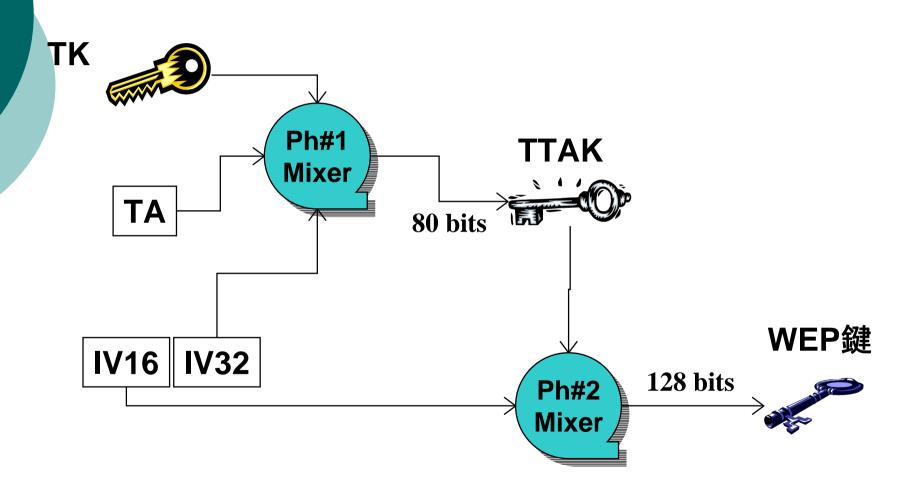
 PRF-256 (Random number, "Init Counter", Local MAC Address | Time)

o PTK for TKIP

- PRF-512(PMK, "Pairwise key expansion", Min(AA, SA) || Max(AA, SA) || Min(ANonce, SNonce) || Max(ANonce, SNonce))
- n = 384 for CCMP, WRAP and WEP


o GTK for TKIP

- PRF-256(GMK, "Group key expansion", AA | | GNonce)
- n = 128 for CCMP, WRAP, and WEP


TKIP (Temporal Key Integrity Protocol)

- IV 空間の拡張(24 -> 48 bits)
- IV シーケンス処理の規定
- Per-packet-mixing Function
- Michael MIC (Message Integrity Code)

TKIP Frame Format

Per-packet-mixing function

What's Michael?

- Niels Ferguson によって考えられたメッセー ジダイジェスト関数の一種
- 8 octets の hash 値を生成
- MSDU に対して行われる
- ○守られるのは、
 - Destination MAC address
 - Source MAC address
 - Data

Why Michael?

- 与えられた CPU サイクルはごく僅か
 - MD5 や SHA-1 は使えない
 - 演算を慎重に選ぶ必要あり
- 設計上のゴールは 20 bits の強度を持つ
 - 現在知られている最も強力な攻撃は 2^29 個のメッセージを使った差分暗号解析
- o Countermeasure が必要

Michael Countermeasure (AP)

- Multicast Frame Φ MIC Failure
 - 1) Group Key を捨て、マルチキャストの送信を止め、 ログを記録し、blackout timer (60秒) を開始する。
 - 2) blackout 中に再度 MIC failure があった場合は、 blackout が解けるまで Group Key の生成を待つ。
 - 3) 2 way handshake による Group Key の生成。
- Unicast Frame Φ MIC Failure
 - 1) ログを記録し、blackout timer (60秒) を開始。
 - 2) 802.1X フレーム以外の送受信をストップ。
 - 3) blackout 中に再度 MIC failure があった場合は、 blackout が解けるまで Pairwise Key の生成を待つ。
 - 4) 4 way handshake による Pairwise Key の生成。

Michael Countermeasure (STA)

- o Multicast Frame Φ MIC Failure
 - 1) Group Key の削除。
 - 2) Access Point に新しい Group Key をリクエスト。
 - 3) ログの記録。
- Unicast Frame Φ MIC Failure
 - 1) 802.1X フレーム以外のフレームの送受信をストップ。
 - 2) Access Point に新しい Pairwise Key をリクエスト。
 - 3) ログの記録。

Is Michael subject to DoS??

- ○理論的には可能
- 実際にはちょいと面倒
 - IV replay protection をかいくぐり、
 - ICV のチェックをパスしなければならない。
- もっと簡単な DoS があるじゃない!
 - Disassociation or Deauthentication 攻撃
 - RF jammer

PreShared Key (PSK) Mode

- RADIUS を使用しない(用意できない)場合を想定
 - ・ホームユース
- 802.1X で実現していた部分を手動設定で代替
 - 認証
 - PMK の配布
 - 802.1X 以降の動き(4 and 2 way handshake, 鍵の 導出、TKIP、等)は non-PSK 時と同様
- PMK (256bits) を AP, STA 双方に設定
- Pass Phrase から 256 bits PMK を生成する際 の推奨方法も別途規定
 - PKCS#5 PBKDF2 (Password-Based Key Derivation Function)

WPA PSK は安全か? ~active attack 編~

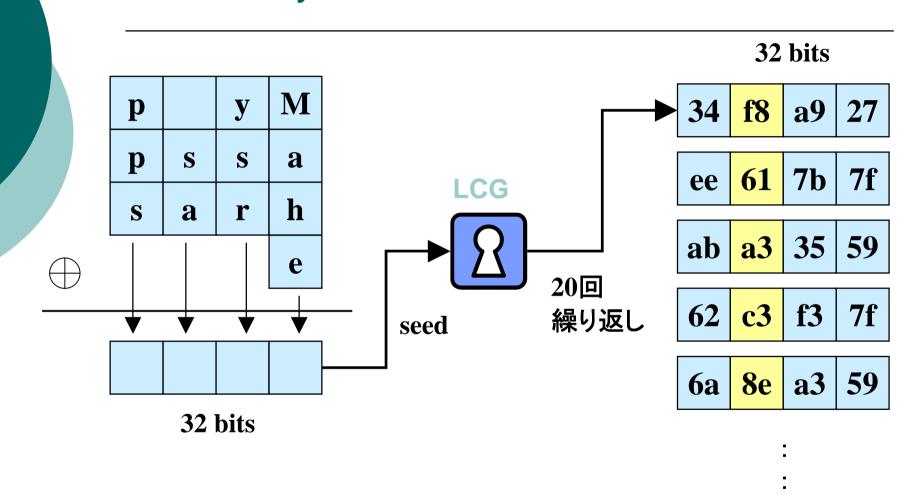
- (WEP と同様)仕組み的には per-user で 適用できるが、(これまた WEP と同様)ほ ぼ全ての実装で ESS 内で共通の PSK を 用いる
 - PSK を知っていれば他のユーザーのトラフィックは解読できる

WPA PSK は安全か? ~passive attack 編~

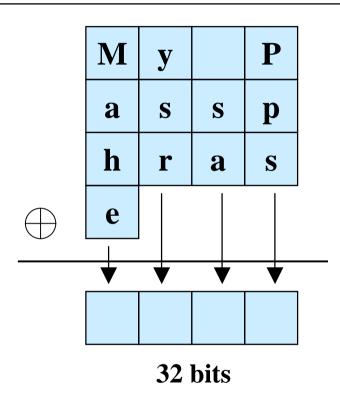
- PSK = PBKDF2(PassPhrase, SSID, SSID length, 4096, 256)
- Pass Phrase: 8 ~ 63 文字
- o n 文字の Pass Phrase のエントロピー
 - \bullet 2.5 * n + 12 bits
 - 64bit のエントロピーを得るためには21文字程度、104bit のエントロピーを得るには37文字程度必要
- o 十分な長さのない Pass Phrase を使うと dictionary attack 可能!

PSK in IPsec vs PSK in WPA

- o IPsec の PSK は認証にしか使わない!
 - 鍵はあくまで DH 鍵交換によって得られる
 - 仮に PSK が分っていても、passive に decrypt することはできない
- WPA の PSK (PMK)は鍵の生成に関与する
 - PTK = PRF-512(PMK, "Pairwise key expansion",
 Min(AA, SA) || Max(AA, SA) || Min(ANonce, SNonce)
 || Max(ANonce, SNonce))
 - Nonce はアソシエーション時に交換される
 - それを取り逃がしてしまったら deassociation attack すれば良い!

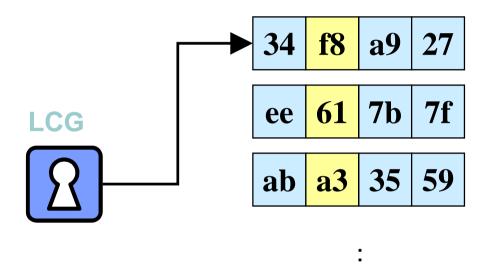

Pass Phrase からの WEP key 生成

- 標準ではないが、多くのベンダーが実装している
- LCG-based derivation for 40bits key
- MD5-based derivation for 104bits key


Linear Congruential Generator

- o LCG (m, a, b, y_0) ← $y_{n+1} = a * y_n + b \pmod{m}$
 - m, a, b, y₀ は任意(だが注意深く選ぶ必要あり)
- 多くのライブラリの rand() で使われている
- o LCG (2^{31} -1, 7^{5} =16807, 0, seed) aka MINSTD
 - Microsoft

40bit Key Derivation from Pass Phrase



エントロピーの低下(1)

- Seed の各 octet の MSB は必ず 0 になる!
- o 00:00:00:00 **~** 7f:7f:7f:7f

エントロピーの低下(2)

- Seed の Bit 24~31 は無関係
- 00:00:00:00 ~ 00:ff:ff:ff

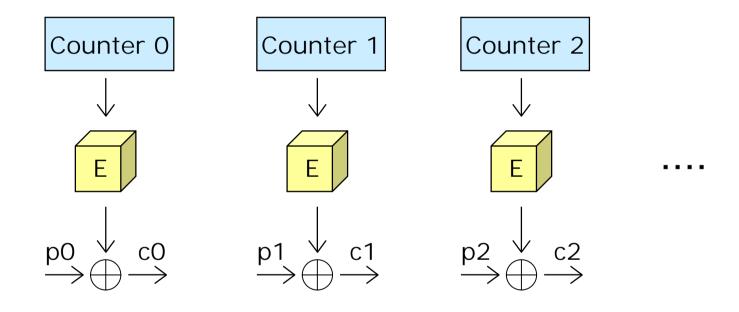
結果的に

- 00:00:00 ~ 00:7f:7f:7f (21bits) の シードだけ調べればよい!
- 総当り攻撃に対する耐性が 40 bits から21 bits への低下

WEPの問題点(再掲)

- 鍵長が 40bit と短い
- ICV に CRC32 を用いている
- ○一つの鍵を使い続ける
- 鍵の配布メカニズムがない
- IV の空間が小さい(i.e. 24bit)
- ○リプレイ攻撃に無力
- FMS 攻撃

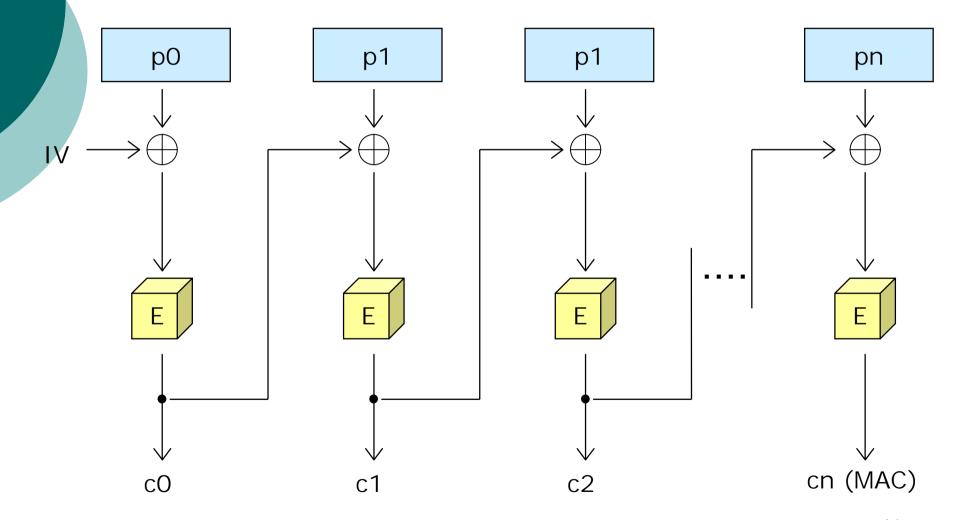
802.11i (a.k.a WPA2)


- CCMP (Counter-mode with CBC MAC Protocol)
 - AES が前提
- WRAP (option)
- TKIP (option)
- Secure IBSS
- Secure fast handoff
- Pre-Authentication
- Security Capability Discovery

0 ...

CCMP

- Counter-mode CBC-MAC Protocol
 - AES を "Counter mode" で使用
 - AES で "CBC-MAC" も計算
- 暗号化と整合性検証を同時に実現する!
- o RFC 3610


Counter-Mode

- 復号化も全く同じプロセスで良 い
- 並列化可能
- ランダムアクセス
- 事前に計算しておける

メッセージはブロックサイズに 依存しない

CBC-MAC

WEP, TKIP and CCMP

	WEP	TKIP	CCMP
暗号化アルゴリ ズム	RC4	RC4	AES
鍵長 (bits)	40, 104 or 128	104 (encrypt) 64 (auth)	128
IV (bits)	24	48	48
データ部の完全性	CRC32	Michael	CCM
ヘッダ部の完全 性	なし	Michael	CCM
Anti-Replay- Attack	なし	あり	あり

結論

- ワイヤレスは安全??
 - 危ない!
 - ○もし、使い方を誤れば
- 今日ワイヤレスを使っても大丈夫?
 - YES!
 - ○使い方を誤らなければ
 - 道具は揃っている!
- 人間は過ちを犯すもの
 - 直せばよい!
 - でも時間がかかる
 - 十分に時間が経ってきた!
- ○「リスク」と「利益」をよく考えよう!

略語一覧

AES AP	Advanced Encryption Standard Access Point	PKCS	Public Key Cryptographic Standard
CBC	Cipher Block Chaining	PMK	Pairwise Master Key
CCMP	Counter-mode CBC MAC Protocol	PPP	Point-to-Point Protocol
CFB	Cipher Feedback	PRF	Pseudo Random Function
CRC32	Cyclic Redundancy Check 32bits	PRNG	Pseudo Random Number
DoS	Denial of Service		Generator
EAP	Extensible Authentication Protocol	PSK	PreShared Key
EAPOL	EAP over LAN	PTK	Pairwise Transient Key
ECB	Electronic Code Book	RADIUS	Remote Access Dial-Up System
ESS	Extended Service Set	RC4	Rivest Code (or Cipher) 4
FCS	Frame Check Sum	RSN	Remote Secure Network
GK	Group Key	SHA1	Secure Hash Algorithm 1
GMK	Group Master Key	SSID	Service Set Identifier
ICV	Integrity Check Value	STA	Station (client)
IE	Information Element	TA	Transmit (MAC) Address
IV	Initialization Vector	TK	Temporal Key
LCG	Linear Congruential Generator	TKIP	Temporal Key Integrity Protocol
LEAP	Lightweight EAP	TLS	Transport Layer Security
MAC	Message Authentication Code	TTAK	TKIP-mixed Transmit Address
MD5	Message Digest 5		and Key
MIC	Message Integrity Code	TTLS	Tunneled TLS
OFB	Output Feedback	WEP	Wired Equivalent Privacy
PAE	Port Authentication Entity	WPA	Wi-Fi Protected Access
PBKDF	Password-Based Key Derivation	XOR	Exclusive OR
	Function		
PEAP	Protected EAP		