Multipath TCPの紹介と最近の動向

Yoshifumi Nishida
GE Global Research
Who Am I?

Name: Yoshifumi Nishida

Current Job
- Senior Researcher at GE Global Research in San Ramon, CA

IETF Activities
- Co-chair of TCPM Working Group
- Co-chair of Multipath TCP Working Group
- Transport Area Directorate
What Is Multipath TCP?
What is Multipath TCP (MPTCP)?

- An extension to TCP
 - Not a new protocol

- Allow single TCP session to use multiple addresses
 - Utilize multiple TCP connections, but expose only one TCP connection to upper layer

Current TCP

Host A

TCP connection

Host B

Multipath TCP

Host A

TCP connection

Host B
Benefit for MPTCP

- Basic advantages
 - Increase throughput
 - Utilize multiple paths simultaneously
 - Increase resiliency
 - Failover to other paths when one path becomes unavailable
 - Dynamic address configuration
 - Add or delete IP addresses without terminating connection

- Additional possibilities
 - Mobility support
 - Don’t need to use Mobile IP
 - Stimulate IPv6 transition
 - Legacy IPv4 applications will start using IPv6 without any modification
Why Not Multiple TCP Connections?

- Applications can use multiple TCP connections!
- But,
 - Need to rewrite existing applications
 - It can be too aggressive than normal TCP
 - Especially when all paths share the same bottleneck
 - Sophisticated data transmission will be difficult
 - Retransmit data to other paths will be tricky
 - Applications need to decide how much data to be sent on each path
Why Not SCTP?

- SCTP already supports using multiple addresses!
- But,
 - Middlebox traversal can be problematic (especially NAT)
 - Some middleboxes don’t understand SCTP traffic
 - Need to rewrite existing applications to use SCTP
 - SCTP uses different APIs
 - Not easy to fallback to TCP
 - It can be cumbersome when peer doesn’t support SCTP
 - Offload engine is not prevailed very much
Isn’t It Too Aggressive?

- MPTCP utilizes multiple TCP connections!
- But,
 - MPTCP employs new congestion control logic
 - Coupled Congestion Control
 - Adjust transfer rate of single flow from total transfer rate
 - Design criteria for coupled congestion control
 - Should coexist gracefully with existing legacy TCP flows
 - Should not be neither too aggressively nor too timidly
 - You can also specify a path to be used as "Backup"
Do I Need to Modify My Application?

- Applications will not be required to update for MPTCP
 - MPTCP can work with current socket API for TCP
 - If your kernel support MPTCP, TCP applications can start using MPTCP

- For advanced features, special APIs for MPTCP will be needed
Multipath TCP Architecture
Layer Architecture

- Multipath TCP operates at the transport layer
 - Transparent to both higher and lower layers

- MPTCP layer is upper layer on TCP
 - It controls multiple TCP sessions as subflows
Signalling

- All control information for MPTCP is sent in TCP options.
- Option Kind: 30
 - Subtype field is used to identify the type of suboptions.
 - 7 types are currently defined:
 - E.g. MP_CAPABLE, DSS, MP_JOIN, ADD_ADDR.
Sequence Numbering

- Use two layers of sequence spaces
 - connection level sequence number
 - subflow sequence number (TCP’s sequence number)

- Sender sends mapping information in TCP options
 - Receiver assembles data from multiple flows by mapping info

MPTCP Mapping

<table>
<thead>
<tr>
<th>Connection Seq Num</th>
<th>subflow ID</th>
<th>subflow Seq Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1000</td>
<td>1</td>
<td>1-1000</td>
</tr>
<tr>
<td>1001-2000</td>
<td>2</td>
<td>5000-6000</td>
</tr>
<tr>
<td>2001-2500</td>
<td>3</td>
<td>1000-1500</td>
</tr>
</tbody>
</table>

Diagram

Application Data: 2500 Bytes

Connection Level sequence number

- subflow 1: 1000 Bytes, seqnum: 1
- subflow 2: 1000 Bytes, seqnum: 5000
- subflow 3: 500 bytes, seqnum: 1500
Congestion Control (1)

- A simple sample target scenario
 - Network resources behave like a single pooled resource
 - MPTCP uses two links modestly, but efficiently
 - Compete normal TCP modestly
 - Outperform single path TCP

![Diagram of network connections and throughput examples]
Congestion Control (2)

- Coupled Congestion Control
 - Affect only increase phase of the congestion avoidance state
 - Use Linked Increase Algorithm
 - Slow-Start, Fast Retransmission, Fast Recovery algorithm are not changed

- Linked Increase Algorithm
 - For each ACK received on subflow i, increase cwnd_i by

\[
\min\left(\alpha \times \frac{\text{bytes_acked} \times \text{mss}_i}{\text{total_cwnd}}, \frac{\text{bytes_acked} \times \text{mss}_i}{\text{cwnd}_i}\right)
\]

\[
\alpha = \text{total_cwnd} \times \frac{\max_i \left(\frac{\text{cwnd}_i \times \text{mss}_i^2}{\text{rtt}_i^2}\right)}{\sum_i \left(\frac{\text{cwnd}_i \times \text{mss}_i}{\text{rtt}_i}\right)^2}
\]

- ‘alpha’ needs to be computed in case of packet lost or once per RTT
Protocol Example (1)

Connection Setup
- Exchange MP_CAPABLE option in SYN exchange
 - Notify it has multipath capability
 - Send a token to enhance security
Protocol Example (2)

Starting New Subflow
- Send JOIN option in SYN packet from new address
 - Attach peer’s token to identify multipath TCP session
Protocol Example (3)

- Address Knowledge Exchange
 - Notify additional address info to the peer
 - Useful for NATed host
Multipath TCP WG Status
Established in November 2008

Current Status
- Finished all initial milestones by March 2013
 - RFC6181 (Threat Analysis) .. Informational
 - RFC6182 (Architectural Guideline) .. Informational
 - RFC6356 (Congestion Control) .. Experimental
 - RFC6824 (Protocol Spec) .. Experimental
 - RFC6897 (API Consideration) .. Informational

Next Step
- Proceed MPTCP protocol spec to Proposed Standard
- Publish supplemental documents
 - Implementation advice
 - Use cases and operational experiences
 - Middlebox behavior
Discussions at 88th Meeting (1)

- Two sessions
 - Monday (17:40-19:40) and Wednesday (15:50-16:50)

- How to advance protocol spec?
 - IESG requests strong security mechanism for PS drafts
 - Current consensus: two-pronged approach
 - Prong 1: Minor updates to address some potential risks
 - Provide the same security level as SCTP Dynamic Address Configuration
 - RFC5061 is PS. So, this is good enough to be PS
 - Prong 2: Major updates for more advanced security
 - TCPCrypt can be a good candidate as base technology
 - But, we will need more investigation
Discussions at 88th Meeting (2)

Q&A session for MPTCP activities in Apple Inc.
- Invite Stuart Cheshire as a speaker

Some comments from Stuart
- MPTCP is currently used only for Siri
 - Migrate between interfaces (3G/LTE, Wifi) based on performance
- If you want to use MPTCP for your appl, use bugreport system
- MPTCP traffic seems to go through most of the Internet
 - Most middleboexs don’t affect MPTCP
- Mobile IP was also considered, but we chose MPTCP
 - More host-level solution and requires home-agents, etc
- Cannot comment on future plans
Additional Information
MPTCP Implementations

- Linux (plus Android)
 - http://www.multipath-tcp.org/
- FreeBSD
- Citrix
 - Netscaler release 10.1
- Apple Inc.
 - Used for Siri
- Others
 - Multipath Networks
 - MPTCP supported router
MPTCP Documentations

- **RFCs**
 - RFC6181 (Threat Analysis)
 - RFC6182 (Architectural Guideline)
 - RFC6356 (Congestion Control)
 - RFC6824 (Protocol Spec)
 - RFC6897 (API Consideration)

- **Technical Background**