S6 今を知り今後に備える! ルーティングセキュリティ DDoS対策最新動向

Internet Week 2017 2017年11月28日

自己紹介

- 西塚要(にしづか かなめ)
 - 2006年 NTTコミュニケーションズ入社
 - ・ OCNアクセス系ネットワークの設計に従事した後、 大規模ISPの運用サービスを担当。現在は研究開発 組織にて、トラフィック分析などISPの課題に関す る研究開発に従事。
- メインフィールド
 - トラフィック分析
 - DDoS対策
 - · IPv4枯渇対策関連技術
- 社外活動
 - IETF標準化 DOTS WG
 - ・ JPNIC「IPv6教育専門家チーム」

1. DDoS攻撃の傾向

"DDoS"の文字がニュース誌面にも登場

- ○○銀行のネットバンキングが使えない
- ○○オンラインのゲームができない
- 攻撃を止めて欲しければ金を払え

Innovative. Reliable. Seamless.

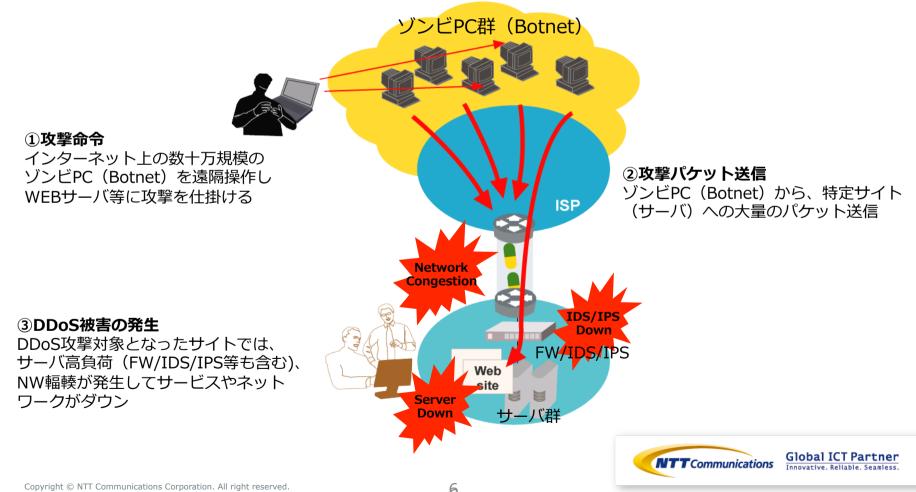
DDoS攻撃の停止と引き換えに金銭を要求する脅迫メール、JPCERT/CCが注意喚起

JPCERTコーディネーションセンター(JPCERT/CC)は2017年9月21日、

DDoS (分散型サービス妨害) 攻撃の停止と引き換えに金銭を要求する脅迫メールを受け取ったとする報告が複数出ていると公表した。 脅迫メールは9月19日頃から確認されており、送信者は「Phantom Squad」を名乗っているという。ただ、「9月14日頃から国内の複数の組織で発生したと報じられているDDoS攻撃の犯人がPhantom Squadであるという情報はなく、関連性は不明」(JPCERT/CC)としている。

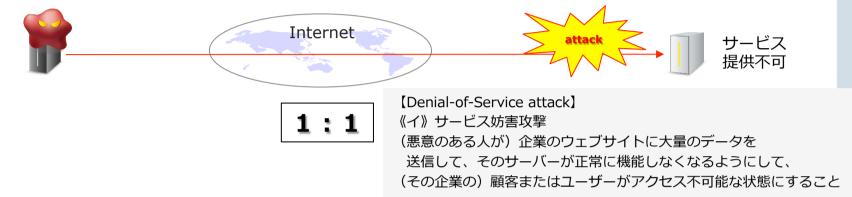
JPCERT/CCが提供を受けた情報によると、脅迫メールは2017年6月20日頃に「Armada Collective」を名乗る攻撃グループが発信した脅迫メールの文面と類似点があるという。一方、文中では宛先や対象を直接指定しておらず、国内外の広範囲に送付されているという相違点も確認されている。

JPCERT/CCは、ネットワークやサーバーにおけるDDoS攻撃発生時の対応体制を平時から点検することを勧めている。また、管理下にあるサーバーやルーターなどがDDoS攻撃の踏み台とならないよう適切に設定することを呼びかけている。

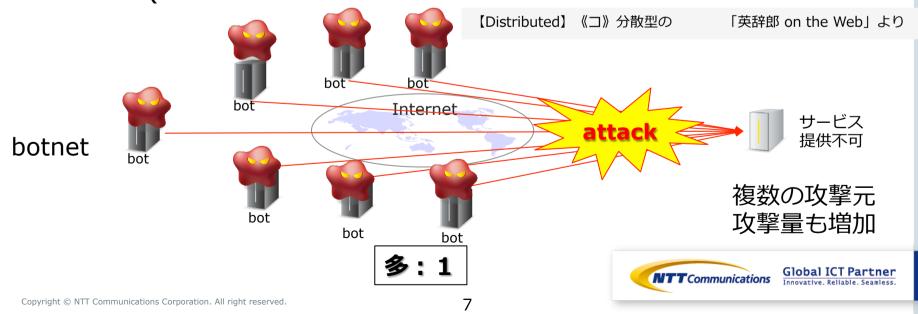


大規模DDoS攻撃の事例

日時	継続時間	攻撃対象	影響内容
2014年6月	数時間	Evernote	400Gbps以上のDDoS攻撃を受け、サービスに支障が出た 金銭要求
2014年6月	半日	Feedly	Evernoteとほぼ同時にDDoS攻撃を受け、サービス停止 金銭要求。米国ISPなどの協力により、サービス復旧
2014年8月	数時間	PlayStation Network	ネットワークに接続障害。サービス利用停止
2014年12月	不明	北朝鮮(STAR-KP)	9時間半にわたり北朝鮮がインターネットから孤立
2015年3月	6日間以上	Greatfire.org	2.6B/h (通常の2500倍) の接続要求が発生。サービス停止。
2015年3月	4日以上	Github	改竄された第三者Webサイトから2秒毎にGithubへ大量アクセスが発生。攻撃が繰り返され、都度対策を実施。
2015年5月	1時間	FXプライム by GMO	ネットバンキングに接続しつらい状況。 <mark>金銭要求</mark> 。
2015年6月	約2時間	セブン銀行	ネットバンキングに接続しつらい状況。 <mark>金銭要求</mark> 。
2015年8月	約3時間	ゲーム「Dota2」の 世界大会	賞金総額1800万ドルの世界大会「The International 2015」二日目にDDoS攻撃が発生。約3時間試合中止
2016年1月	5日間以上	日産自動車	国際的ハッカー集団アノニマスによるDDoS攻撃により、 Webサイトが全面停止(捕鯨への抗議のため)。
2016年10月	約6時間	Dyn (Managed DNS基盤)	IoT機器向けマルウェア「Mirai」によるDDoS攻撃により、 Amazon, PayPal, Twitterなど多くののサービスに支障。 (1.2Tbps)
2017年6月	3日間(断続的)	Final Fantasy XIV 北米サーバ	FF14の北米サーバがDDoS攻撃を受け、6月17、19、21日にネットワーク障害が発生。
2017年10月	2日間	スウェーデンの複数の交 通機関	列車運行を管理するTrafikverket(スウェーデン産業省交通局)のITシステムが麻痺し、列車の運行停止や遅延が発生。

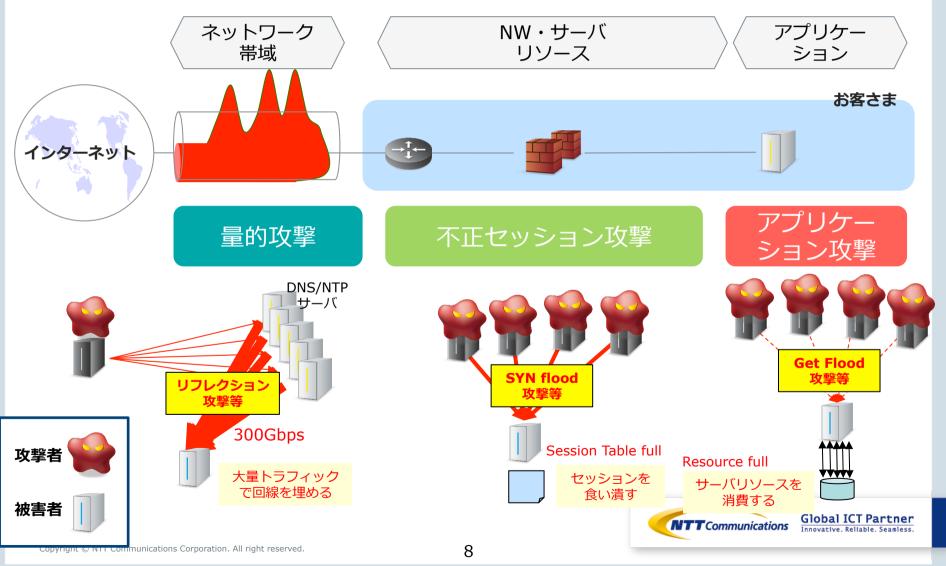

DDoS攻撃とは

DDoS (Distributed Denial of Service:分散サービス妨害)攻撃は、インターネット上に存在する大量のコンピュータから一斉に特定サイト(WEBサーバなど)や企業のネットワークへ不正パケットを送出し、サーバ/システム負荷、ネットワーク輻輳を招き、サービスを停止させてしまう攻撃。ここ数年でDDoS攻撃も深刻化・複雑化しており、事前のセキュリティ対策が不可欠になりつつある。



DoS攻擊/DDoS攻擊

DoS(Denial of Service) 攻撃



• DDoS(Distributed Denial of Service) 攻撃

DDoS攻撃の種類と影響範囲

• 攻撃手法により、影響箇所は異なる

DDoS攻擊手法

✓ 攻撃タイプ毎の割合

アクセス回線を埋めるため、上流ISPでの対策が必要

DDoS Attack Types

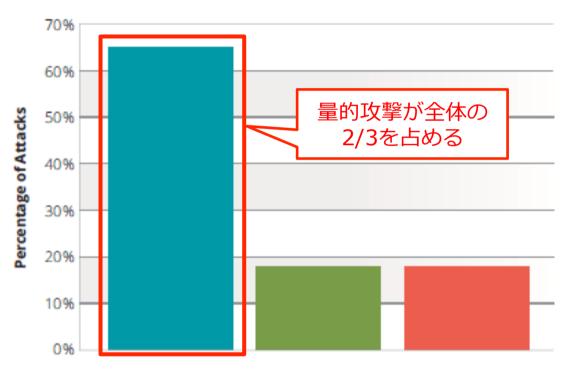
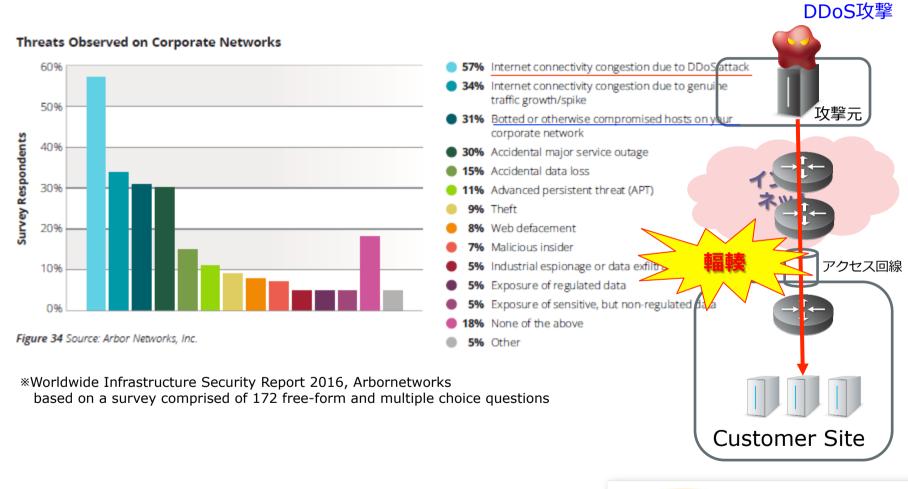


Figure 19 Source: Arbor Networks, Inc.

*Worldwide Infrastructure Security Report 2016, Arbornetworks based on a survey comprised of 172 free-form and multiple choice questions

659 量的


189 不正セッション

189 アプリレイヤ

DDoS攻擊対象

企業ネットワークにおける脅威として、Internet接続部の輻輳が1位

IoTデバイスを利用したボリューム攻撃

リフレクション攻撃ではないボリューム攻撃の発生 マルウェアに感染したIoTデバイスで構成されるボットネットからの攻撃。see

記録的なDDoS攻撃が1ヶ月以内に複数件発生

リフレクション攻撃とは異なりIPアドレスをspoofすることもなく

でまた。 TOS OF MillionS正常な通信と同様にセッションの確立。

Top of MillionS正常な通信と同様にセッションの確立。

Sepi3813440-221 Sepi381440-221 Sepi3814400-221 Sepi381440-221 Sepi3814400-221 Sepi381440-México Turks and Caicos Source: Downdetector.com

Sep | 18 | 10:49:12 | tcp_ack | 20Mpps | 232Gbps Sep|18|10:58:32|tcp_ack|15Mpps|173Gbps Sep|18|11:17:02|tcp_ack|19Mpps|224Gbps Sep | 18 | 11:44:17 | tcp_ack | 19Mpps | 227Gbps Sep|18|19:05:47|tcp_ack|66Mpps|735Gbps Sep|18|20:49:27|tcp_ack|81Mpps|360Gbps Sep | 18 | 22:43:32 | tcp_ack | 11Mpps | 136Gbps Sep|18|22:44:17|tcp_ack|38Mpps|442Gbps Sep | 19 | 10:13:57 | tcp_ack | 10Mpps | 117Gbps Sep|19|11:53:57|tcp_ack|13Mpps|159Gbps Sep|19|11:54:42|tcp_ack|52Mpps|607Gbps Sep | 19 | 22:51:57 | tcp_ack | 10Mpps | 115Gbps Sep | 20 | 01:40:02 | tcp ack | 22Mpps | 191Gbps Sep|20|01:40:47|tcp_ack|93Mpps|799Gbps Sep | 20 | 01:50:07 | tcp_ack | 14Mpps | 124Gbps

Octave Klaba / Oles

♣ フォローする

発生日時	攻撃対象		攻撃帯域	攻撃元			攻撃手法
2016/9/20	KrebsOnSecurit y.com	web	625Gbps	router, DVR, IP camera	BASHLITE Mirai		o SYN/GET/ POST flood o GRE
2016/9/20	OVH	hosting	1Tbs+	DVR IP camera		145,607 IP	o TCP/ack oTCP/ack+psh o TCP/syn
2016/10/21	Dyn	Managed DNS基盤	1Tbs+		Mirai	10s of millions of IP	o Pseudo Random Subdomain Attack

2. DDoS対策手法

DDoS対策の流れ

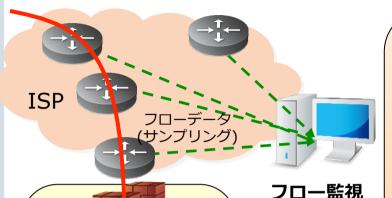
検知

- フロー監視
- パケット監視
- サービス監視
- 申告

防御

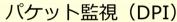
- 遮断
- 設備増強
- 緩和

検知と防御でそれぞれの手法があり、どのように組み合わせるかが重要


DDoS対策手法

検知方法 フロー監視 vs パケット監視

DDoS攻擊


パケット監視

フロー監視 (Netflow/sFlow)

- ・ルータから受信したフローデータを用いて異常監視
- ・アウトラインに設置、網全体のトラフィックを集中監視
- ・フローデータは送受信IPアドレス、プロトコルなど IPヘッダ内の情報

- ・不正侵入監視・ウイルス監視等には向かない
- ・大量トラフィックのDDoS攻撃を集中監視し、網全体の 分析・対策に有効

- ・インラインに設置
- ・全IPパケットの内容(ペイロード)を見てウイルス等を監視
- ・ミリ秒~秒単位で検知・対策
- ・インラインなので、装置の信頼性が必要

- ・不正侵入監視、小規模DDoS攻撃、セッション占有攻撃監視に有効
- ・回線帯域を埋められる攻撃には対処不能、大規模攻撃で全断

DC/Cloud

DDoS検知方法

- ・Netflow、Firewall logs、SNMPが上位
- ・Netflow は昨年より 11% 増、Firewall logs は 8% 減

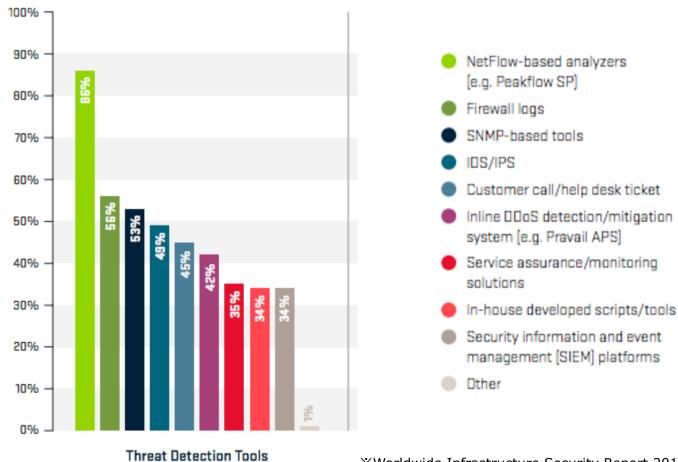
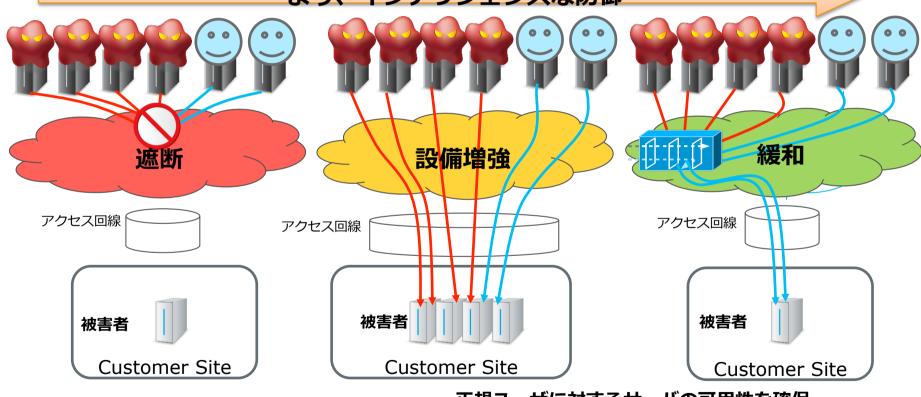


Figure 7 Threat Detection Tools and Threat Tool Effectiveness

*Worldwide Infrastructure Security Report 2017, Arbornetworks

DDoS対策手法 ~ 防御 ~

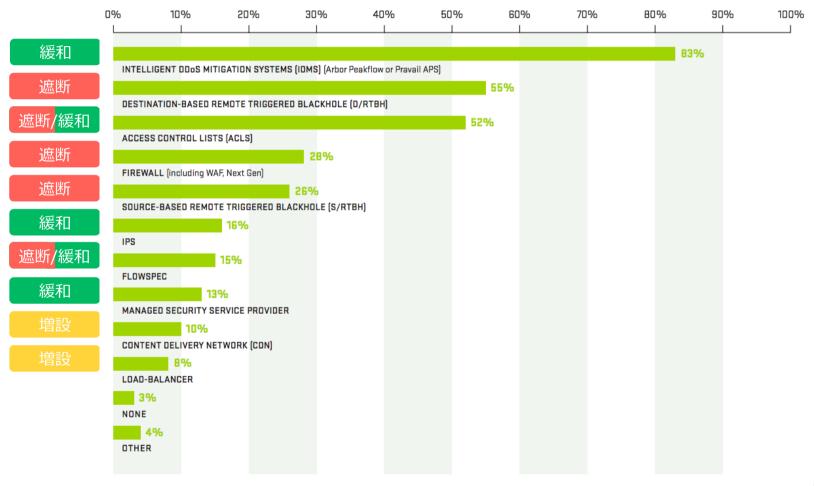

防御方法の違い

• 遮断 正常通信も含めて全ての通信が止まる

• 設備増強 通信はできるが、攻撃も受け続ける

・ 緩和 攻撃のみ遮断、正常通信は通す

より、インテリジェンスな防御

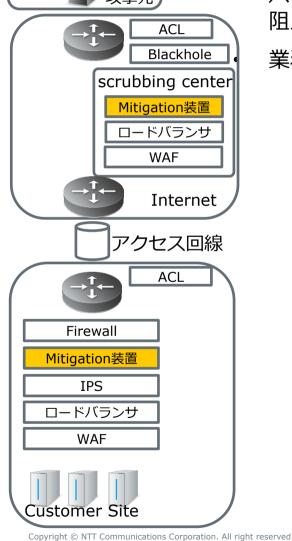

正規ユーザに対するサーバの可用性を確保

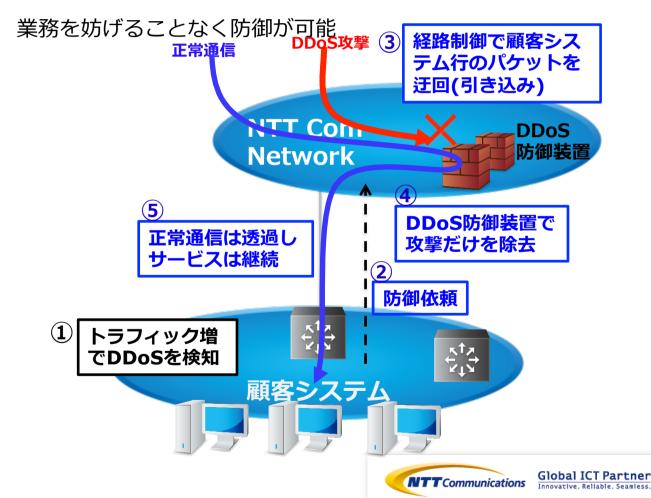
DDoS防御方法

- ・DDoS Mitigation装置、Blackhole Routing 、ACLが中心
- ・増減が目立つのは、IDMS 73% → 83%, ACL 70% → 52%

**Worldwide Infrastructure Security Report 2017, Arbornetworks

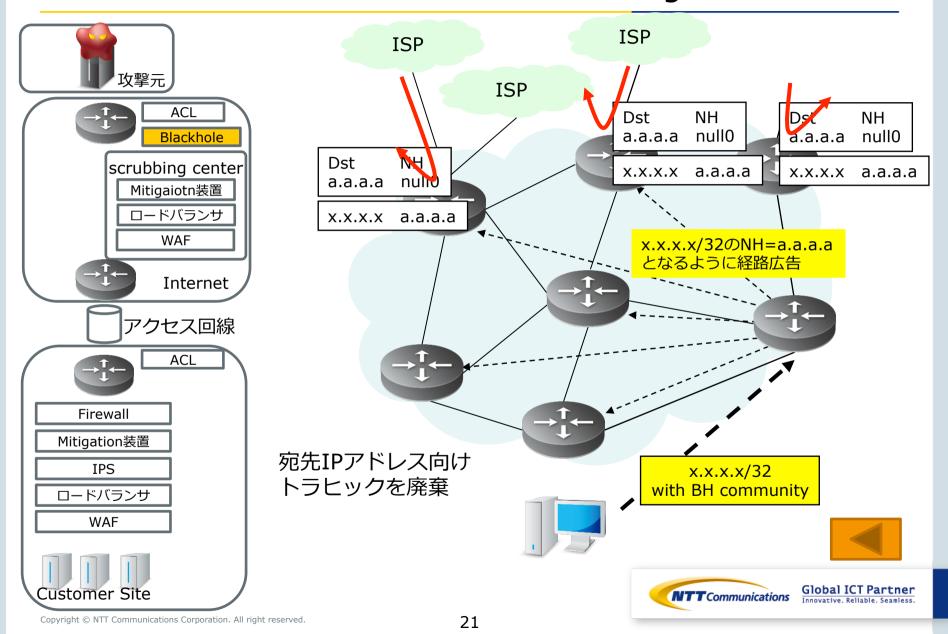
断


増設


緩和

■ DDoS攻撃緩和装置

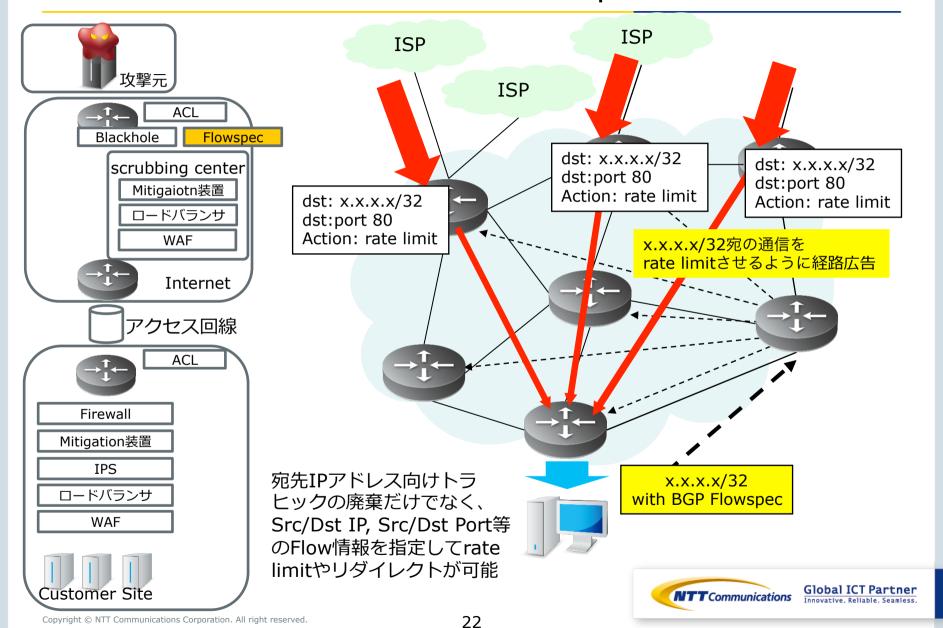
パケットレベルの解析により、攻撃トラフィックのみを識別して 阻止する一方で、正常な業務トラフィックは透過するため、



DDoS防御方法-Blackhole Routing-

増設

緩和

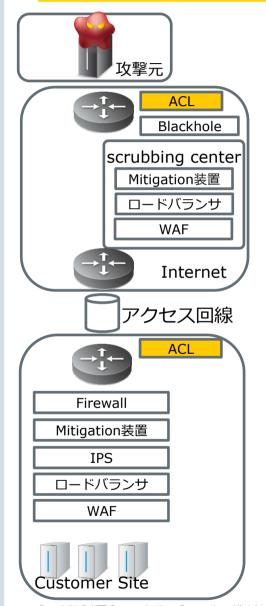


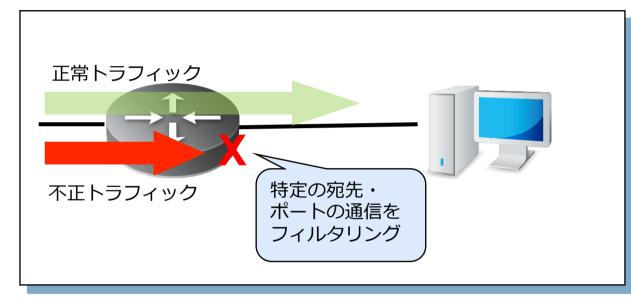
DDoS防御方法-BGP Flowspec-

遮断

増設

緩和

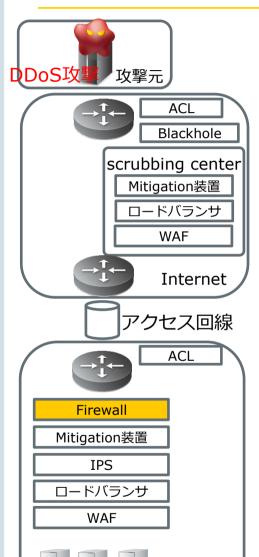



DDoS防御方法-ACL-

増設

緩和

- 設定が比較的容易
- 攻撃者のフィルタリングができない場合は 正常トラフィックも遮断



DDoS防御方法-Firewall-

緩和

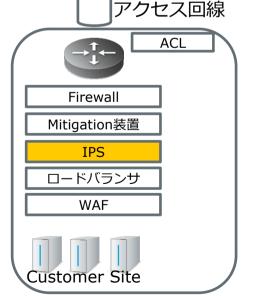
増設

遮断

- ・通常のFirewallはDDoS攻撃防御には不十分
- ・DDoS攻撃はFirewallで許可されたプロトコル・ポート番号を 用いて実行される
- ・さらに、下図で示すように、サーバやアクセス回線と同様に Firewall自体がDDoS攻撃対象になっている
- ・DDoS攻撃パケットでFirewallのフィルター処理負荷を上げられ、 Firewallダウンによりサイト全断する事例が発生している

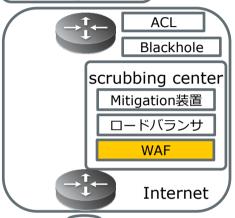
Customer Site

DDoS防御方法-IPS-

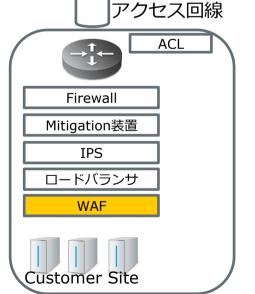

増設

遮断

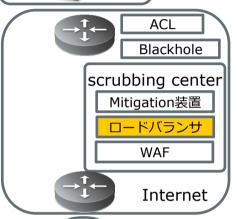
- ・IPS: Intrusion Prevention System (侵入防止システム)
- ・対処箇所は、オンプレミス#大量攻撃時にはボトルネックになる
- ・IPSにはTCP SYN Flood攻撃などの一部のDoS攻撃手法を検出し 廃棄する機能を持つ製品がある
- ・使用しているIPSが検出可能な攻撃で、パケット数やセッション 数等で機器性能内であれば、IPSで不正パケットを廃棄すること でサービスの継続が可能

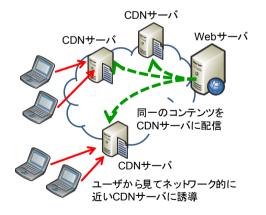

DDoS防御方法-WAF-

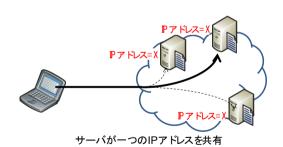
緩和


増設

遮断


- WAF: Web Application Firewall
- ・対処箇所は、クラウドおよびオンプレミス #大量攻撃時にはボトルネックになる
- ・Webサーバに特化したDoS攻撃も出現していることから、 TCP SYN Flood攻撃から、Slow DoS攻撃のようなTCPコネク ションに関わるリソースを占有する攻撃に対策可能な製品が存在





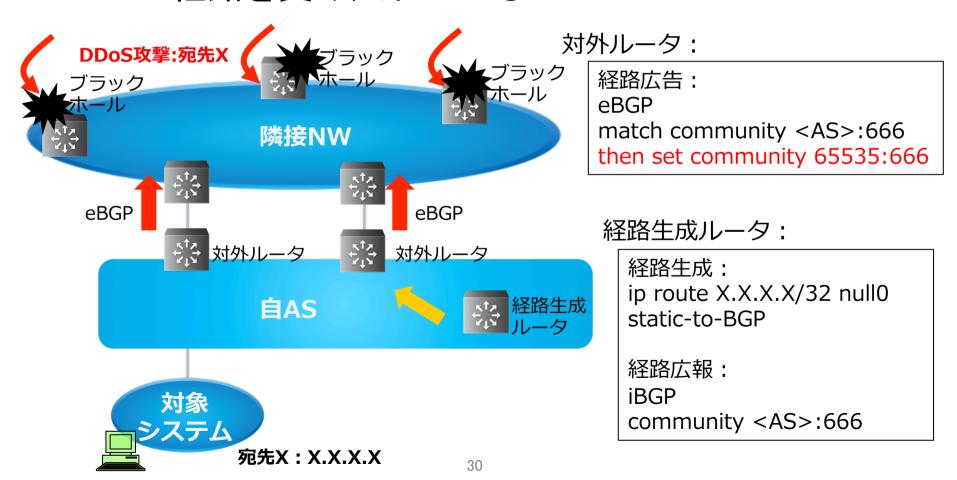
- アクセス回線
- Firewall
 Mitigation装置
 IPS
 ロードバランサ
 WAF
 Customer Site

- ・トラフィックを負荷分散させることで、不正パケットに対する サーバ負荷を分散し、サービスの継続が可能 #攻撃を止める訳ではなく、力技!!
- ・負荷分散の手段としては、
 - CDN(Content Delivery Network)
 - ・IP Anycast も同様に、不正パケットに対するサーバ負荷を分散し、 サービスの継続が可能

CDNによるトラフィック分散

IP Anycastによるトラフィック誘導

3.BGPを利用したDDoS対策



BGPを利用したDDoS対策

- BGPを利用したDDoS対策手法
 - 1. RTBH(Remotely Triggered Black-Hole Routing)
 - 2. BGP Flowspec
 - 3. (BGPを利用したトラフィック引き込み)
 - 直接の防御手法ではなく、クラウドタイプの防御手法で組み合わせて使われる
- なぜBGPを使うのか
 - 隣接ASへ防御を依頼するため

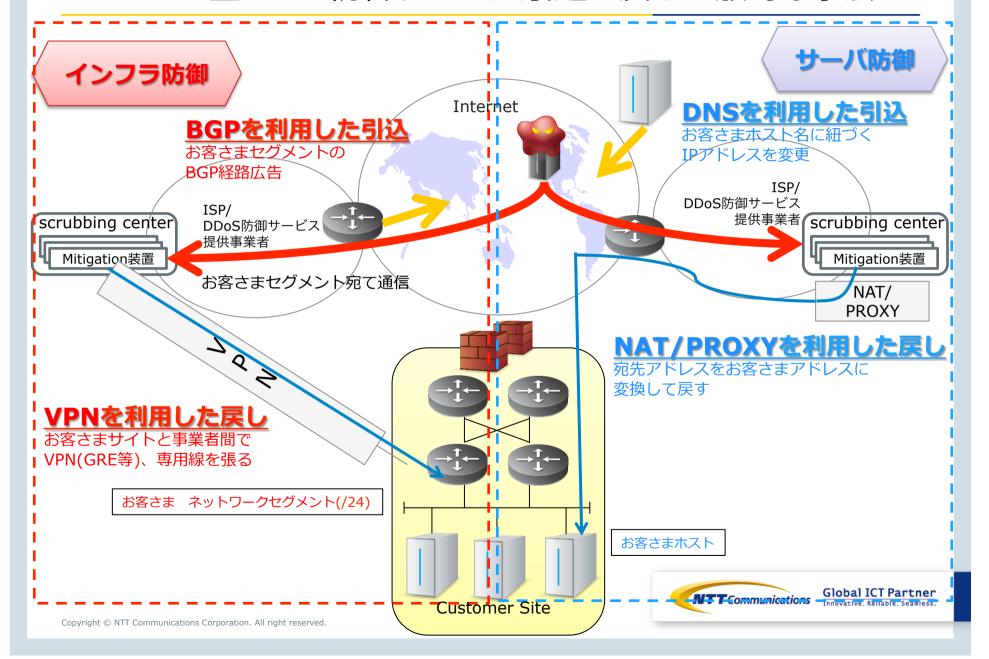
隣接NWにおけるRTBHサービス

一部のトランジットASやIX事業者は、顧客からの RTBH経路を受け入れている

隣接するNW(ISP/IXP)によるRTBH

- ・メリット
 - 自ASに攻撃が入ってくる前に攻撃を止められるため、 上流回線の輻輳を避けることができる
 - 自ASのRTBHと組み合わせて利用できる
 - 自動化が容易である
- ・デメリット
 - 攻撃が止まったかどうかの判断ができない
- 注意点
 - 対応していない事業者もある
 - RTBH用の広告経路を受け入れてもらえるようフィルタを空けてもらうことを忘れないように

Selective RTBH

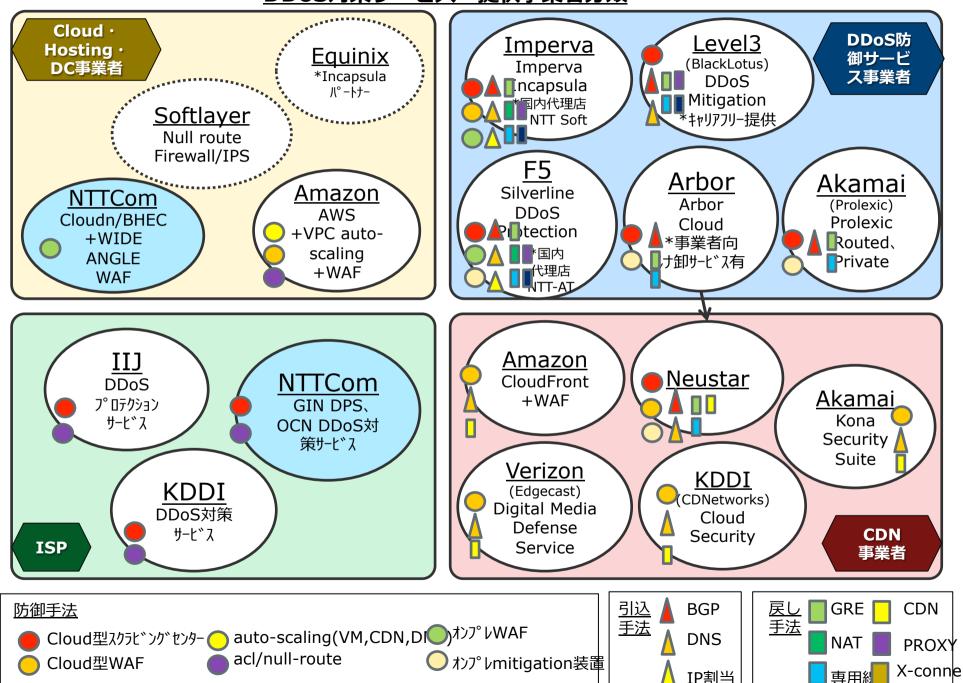

- 全網内でブラックホール化するのではなく、地域ごと や国ごとなどの特定エリアのルータでのみパケット を破棄する
- ・ 自国内の折り返しについてはブラックホールさせたく ない場合などの利用方法が考えられる
- 例: AS2914

Selective Blackhole communities				
2914:661	only blackhole inside the region the announcement originated			
2914:663	only blackhole inside the country the announcement originated			
2914:660	only blackhole outside the region the announcement originated			
2914:664	only blackhole outside the country the announcement originated			

4. DDoS対策サービス

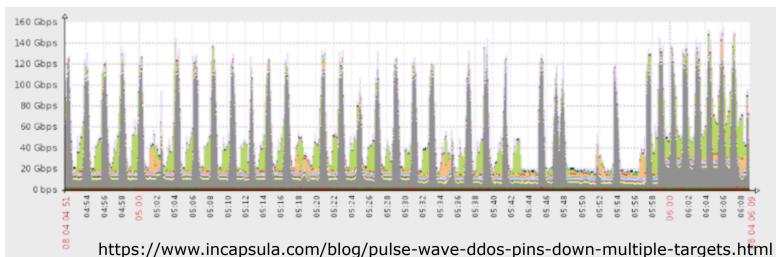
Cloud型DDoS防御サービス引込+戻し一般的な手法

DDoS防御サービス 選択のポイント

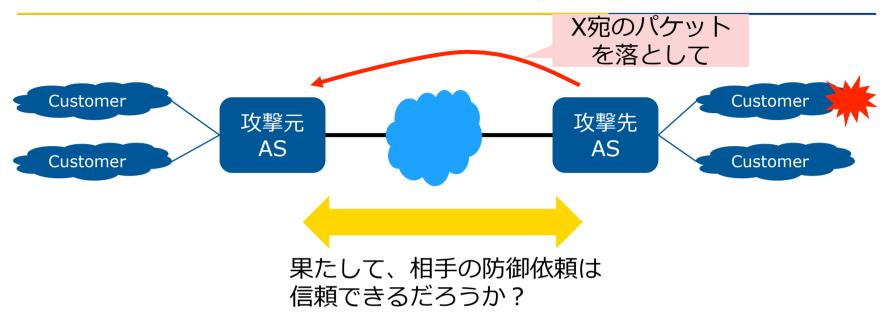

Type of Attacks		攻撃対象	攻撃例	防御サービス	事業者NW引 込・戻し	
				防御ポイント	防御提供方式	手法
Sophistication	量的 攻撃	ネットワーク帯域 Saturate Bandwidth	UDP floods, ICMP floods Spoofed packet floods	事業者 NW	Cloud型mitigationCloud型WAFauto-scaling(CDN,VM,DNS)acl/null-route	引込 ・BGP ・DNS ・IP割当 戻し ・GRE ・NAT ・Proxy ・CDN ・専用線 ・x-connect
				顧客Site	*顧客サイトでの防御困難	
	不正セッショ ン攻撃	サーバー群(サー バー、Fireawall、 LoadBlancer等)	SYN floods, fragmented packet attack, Ping of Death, SmurfDDoS	事業者 NW	・Cloud型mitigation ・Cloud型WAF	
				顧客Site	・オンプ゜レWAF・IPS ・オンプ゜レMitigation	
	アプリケーショ サーバーアプリ ンレイヤ攻撃 ケーション	Slowloris, HTTP flood, DNS dictionary,	事業者 NW	・Cloud型*mitigation ・Cloud側*WAF *非対称ルート環境下で、シ グネチャベース対応に制限有		
			Zero-day DDoS	顧客Site	・オンプレWAF・IPS ・オンプレMitigation装置	

※クラウド型: ユーザネンプレではなく、ISP、DDoS防御サービス事業者等の事業者ネットワーク内に 配置した設備で防御を提供するサービス形態

DDoS対策サービス・提供事業者分類



5. これからのDDoS対策サービス



これからのDDoS対策

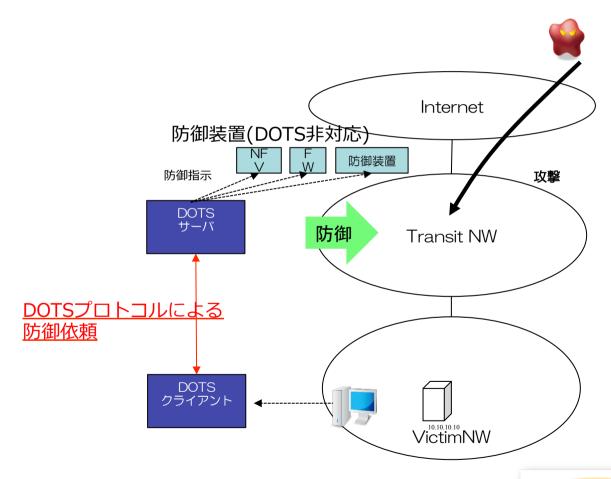
- パケットフィルタリングアウトソーシング
 - 1つのNWのキャパシティを超える攻撃
 - 別のNWに防御を依頼する
 - 例: NANOG71 (2017/10) における、AT&TとCenturyLink のDDoS Peering(flowspecルールの相互流通)の発表
- セキュリティオートメーション(自動化)
 - Pulse wave DDoS
 - 人手での対策は困難

防御依頼と相互信頼

■ セキュリティオートメーションと相互信頼を実現する技術として、IETFにて DOTSプロトコルが検討されている

DOTSプロトコルとは

- DOTSプロトコル
 - DDoS Open Threat Signalingの略称
 - DDoS対策における組織内/間の防御依頼の標準化をめざして、 DOTS WGが2015年にIETFで発足
- 既存のDDoS対策の問題点
 - インターネットへつながる回線が輻輳させられてしまうほどの大規模な攻撃であった場合には、上流のサービスプロバイダや専門のDDoS対策事業者に防御(ミチゲーション(緩和)やスクラビング(除去)と呼ばれます)を依頼する他に、回線の輻輳を避ける方法がない
 - しかし、防御依頼を受け付ける機械的な窓口がなく、人間が メールあるいは電話対処するため、防御を発動するまでの時間がかかり、その間は攻撃が成立し続けてしまう


DOTSプロトコルの動き

- DOTSプロトコルの動き方
 - 利用者側のDOTSクライアントから提供者側のDOTSサーバ に対して、攻撃を受けているIPアドレスなどの情報とともに 防御を依頼
 - 依頼を受けたDOTSサーバ側は、認証および防御依頼のバリデーションを実施した上で、DDoS対策を実施
- DOTSプロトコルのメリット
 - 1. 人間を介さない防御受付のインタフェースが規定されることで、DDoS対策の自動化が可能になる
 - 2. 複数の対策事業者に対して共通のプロトコルで防御依頼をすることができるようになる
 - 3. 別の対策事業者に防御依頼をするような事業者間連携を実現できる

DOTS利用シーン その1

■ 人間を介さない防御受付インタフェースによるDDoS対策自動化

DOTS利用シーン その2

■ 防御装置(DOTS対応)への防御依頼の共通化

DOTS利用シーン その3

■ キャパシティオーバの際に別の対策事業者に防御依頼をするような事業者間連携が実現できる

業界動向

■ (私見です)

Arbor	2016年9月に観測された1Tbps規模のDDoS攻撃を背景に、他のDDoS対策事業者(AKAMAI/Prolexic)との連携を模索している。WGにて精力的に活動
AKAMA	早期のdots プロトコル仕様確定に期待
I/	「DOTS対応をDDoS対策サービスの選び方に加えるべき」
Prolexi	
С	
Radwa	自社サイトにて、dots プロトコルへの対応を明言
re	
Verisig n	DDoS対策サービスを提供。Arborとの連携を想定に、WGにて精力的 に活動
	Cisco の NW機器に dots のクライアント機能を入れる狙い。CPEや IoTデバイスの防御がメインのユースケースか。WGにて精力的に活動
_	キャリアの視点で、各DDoS対策サービスを利用したい考え。Ciscoと 共に、マネージドCPEを出す狙いか

DOTS プロトコルスタック

	Signal Channel	Data Channel
スタック	++ DOTS ++ CoAP	DOTS
	TLS DTLS ++ TCP UDP ++ IP	TLS
アプリケーション	CoAP	RESTCONF
セキュリティ	TLS/DTLS	TLS
トランスポート	TCP/UDP	TCP
目的	(攻撃を受けているときに) 防御を依頼するチャンネル	(攻撃を受けていないとき に)防御をセットアップする チャンネル
クライアント→サーバ	・防御依頼(開始/停止) ・攻撃を受けているIPアド レス・プレフィックス ・防御状況の確認	・ネットワーク情報の登録・テレメトリ情報
サーバ→クライアント	・防御状況の報告	・テレメトリ情報 Communications Innovative, Reliable, Sealless,

Go implementation of DOTS

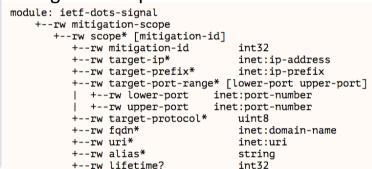
Demo scenario:

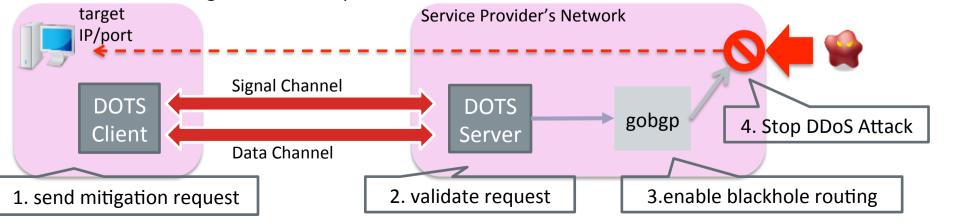
Enabling DDoS Protection in an upstream network by DOTS protocol

https://github.com/nttdots/go-dots

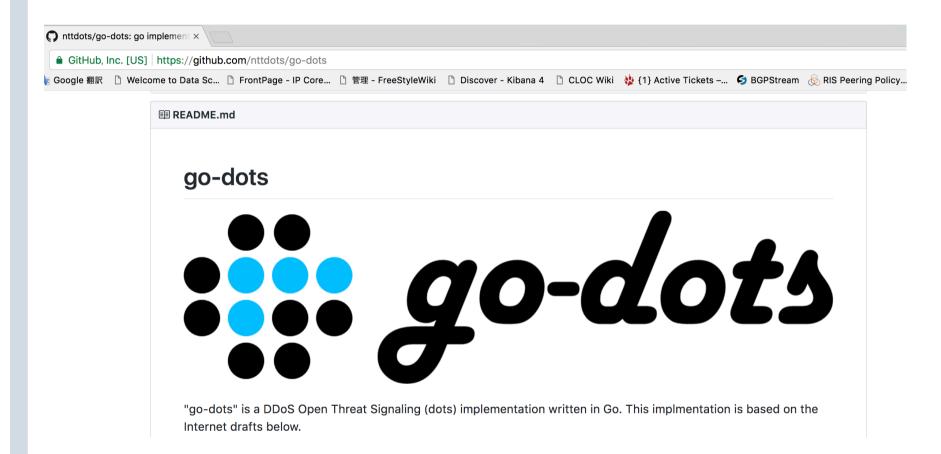
DOTS is:

- DDoS Open Threat Signaling
- Automation and Standardization of signaling for <u>DDoS</u> <u>protection</u>
- "ask for help!" from a victim to an upstream provider
 - inter-organization / including authN and authX in


spec


What you can see in this demo:

- A DOTS client sends a mitigation request to a DOTS server over DOTS signal channel.
- The DOTS server receives and validates the request, then starts mitigation by kicking a blocker
- In this demo, the blocker is a gobgp server which triggers "blackhole routing" in a service operator's network


Signal Channel | DOTS | DOTS | | COAP | RESTCONF | | TLS | DTLS | TLS | | TCP | UDP | TCP | | IP | IP |

Mitigation Request Model

オープンソース実装(世界初)

IETF ハッカソン

- IETF99 プラハ (2017年7月)
 - オープンソース実装の改善を実施
 - Best Name Awardを受賞
- IETF100 シンガポール (2017年11月)
 - NCC Groupの実装と相互接続試験を実施
 - Best Open Source Award を受賞

まとめ

- DDoS対策もルーティングセキュリティも、事業者間での合意 や連携が重要
- 新しい提案が次々と出てきていますが、一緒に試していきま しょう

