ラズパイで始めるIoTハンズオン ~電気のキホンからデータ送受信、可視化まで~

Part.2 Node-REDを使う

ONode-REDを使って、プログラマブルな動作をさせる OZabbix Serverにセンサーデータを送信する

Node-Redの基礎
Lチカ (GPIO出力)
温湿度センサー
HTTPサーバ (API)
Zabbixへのメトリクス送信
注意事項

江草 陽太

さくらインターネット 執行役員 技術推進統括担当

NW/DB/SC スペシャリスト sakura.ioの設計・開発

Node-REDの基礎

Node-REDとは

JavaScriptで開発された、ビジュアルプログラミングツール。 入力と出力を持った「Node」を繋ぐことで動作を表現する ことができる。

JavaScriptのパッケージマネージャ「npm」を使って、公開 されている様々なNodeをインストールすることが可能。

Node-REDとは

ー連の動作の流れを Flow と呼ぶ

はじめてのFlow -利用するNode-

手動または定期的にメッセージをフローに送出します。 メッセージのペイロードには、文字列、JavaScriptオ ブジェクト、現在の時刻など、さまざまな値を指定で きます。

サイドバーの「デバッグ」タブに、選択したメッセー ジプロパティの値を表示します。 デフォルトの表示対象は msg.paylod です。

はじめてのFlow - Flow -

- 1. サイドバーからノードをドラッグアンドドロップ
- 2. ノード間を接続
- 3. ノードの設定変更 (次ページ参照)
- 4. デプロイボタンをクリック

はじめてのFlow - Inject/ードの設定-

- 1. Injectノードをダブルクリック
- 2. ペイロード「日時」
- 3. 繰り返し「指定した時間間隔」
- 4. 時間間隔「5秒」

inject ノードを編	集		
削除	中止完了		
✓ プロパティ			
┓ペイロード	▼ 日時		
■ トピック			
	□ Node-RED起動の 0.1 秒後、以下を行う		
C 繰り返し	指定した時間間隔		
	時間間隔 5 🗘 秒 💠		
♥名前	名前		
注釈: 「指定した時間間隔、日時」と「指定した日時」はcronを使用します。詳細はノードの「情報」を確認してください。			

はじめてのFlow -デバッグタブ-

デバッグメッセージは 「デバッグタブ」に表示されます

○ サイドパネルの「デバッグタブ」をクリック

棄 デバッグ		i	ЭĒ	Ф		-
		▼全	てのこ	70-	ť	Ì
2018/11/12 11:06:31 node: e641101e msg.payload : number 1541988391666	.10fd					
2018/11/12 11:06:36 node: e641101e msg.payload : number 1541988396669	.10fd					
2018/11/12 11:06:41 node: e641101e msg.payload : number 1541988401673	.10fd					
2018/11/12 11:06:46 node: e641101e msg.payload : number 1541988406679	.10fd					
2018/11/12 11:06:51 node: e641101e msg.payload : number 1541988411683	9.10fd					

Lチカ (LED点滅)

Lチカ - GPIOで使うNode-

GPIOの入力ピンの状態に応じて、0または1の値を 持つ msg.payload を生成します。

GPIOの出力ピンにデジタルモードまたはPWMモード で出力します。 デジタルモードの場合0または1の値を入力します。

Lチカ -利用するNode-

メッセージを受信すると、別のメッセージを送信します。 遅延をかけて別のメッセージを送ることもできます。

1秒ごとにメッセージを生成 (Injectノード)
 1を送信し、0.5秒後に0を送信 (Triggerノード)
 これらをGPIOポートに出力 (GPIOノード)

Lチカ - Injectノードの設定-

Inject/ードをダブルクリック
 繰り返し「指定した時間間隔」

3. 時間間隔「1秒」

2秒間隔でメッセージを送出

inject ノードを編	集
削除	中止
✓ プロパティ	
■ペイロード	▼ 日時
■ トピック	
	□ Node-RED起動の 0.1 秒後、以下を行う
€ 繰り返し	指定した時間間隔
	時間間隔 1 秒
●名前	名前
<mark>注釈:</mark> 「指定し ます。詳細はノ	た時間間隔、日時」と「指定した日時」はcronを使用し / ードの「情報」を確認してください。

Lチカ - Triggerノードの設定-

- 1. Triggerノードをダブルクリック
- 2. 送信データ 「1」
- 3. 送信後の処理「指定した時間待機」「500ミリ秒」

4. 再送信データ「数値」「0」

メッセージが入ってきたら「1」を送出 0.5秒後に「0」を送出

trigger ノードを編集				
削除	中止 完了			
> プロパティ				
送信データ				
送信後の処理	指定した時間待機 ◆			
	500 ミリ秒 ◆ □新たなメッセージを受け取った時に遅延を延長			
再送信データ	▼ ^a _z 0			
初期化条件: •	msg.resetを設定 msg.payloadが次の値 任意			
処理対象	全メッセージ ◆			
♥ 名前	名前			

Lチカ-GPIOノードの設定-

- 1. GPIOノードをダブルクリック
- 2. LEDを接続した端子をクリック
- 3. 出力形式「デジタル出力」
- 4. 再送信データ「数値」「0」

rpi-gpio out ノードを編集				
削除		1	中止 完了	
✓ プロパティ				
● 端子	3.3V Power - 1	2 - 5V Power		
	SDA1 - GPIO02 - 3 SCL1 - GPIO03 - 5	4 - 5V Power	- 1	
	GPIO04 - 7	8 - GPIO14 - TxD		
	Ground - 9 🔵	O 10 - GPIO15 - RxD		
	GPI017 - 11 🔵	12 - GPIO18		
	GPIO27 - 13 🔵	🔵 14 - Ground		
	GPIO22 - 15 🔵	16 - GPIO23		
	3.3V Power - 17	18 - GPIO24		
	MOSI - GPIO10 - 19 🔵	20 - Ground		
	MISO - GPIO09 - 21 🔵	22 - GPIO25		
	SCLK - GPIO11 - 23	24 - GPIO8 - CE0	_	
	Ground - 25 🔵	26 - GPIO7 - CE1	_	
	SD - 27 🔵	28 - SC		
	GPIO05 - 29 🔵	30 - Ground		
	GPIO06 - 31	32 - GPIO12		
	GPI013 - 33	34 - Ground		
	GPI019 - 35	36 - GPIO16		
	GPI026 - 37	38 - GPIO20		
	Ground - 39	• 40 - GPI021		
出力形式	デジタル出力	\$		
	□ 端子の状態を初期化			

温湿度センサー-使うNode-

メッセージが入力されたタイミングでDHT11または DHT22から温度と湿度を読み取ります。

送出されるメッセージの msg.payload に温度、msg.humidity に湿度が含まれます

※ node-dht-sensor と node-red-contrib-dht-sensor のインストールが必要です

API-HTTPサーバで使うNode-

ルールに基づいてメッセージを変更したり、変数の 操作を行います。 温度と湿度それぞれを文字列から数値に変換するの に利用します。

ルールに基づいて条件分岐を行います。

完成したフローを読み出し

1. メニューをクリック

- 2. 「読み込み」
- 3. 「ライブラリ」
- 4. 「DHT11」

DHT11ノードの番号を修正してください

			━∕ ̄ デプロイ マ	≡
		•	表示	
	クリップボード	•	読み込み	
dht11	◀ ライブラリ		書さ 山 し	
			ノードを検索	
			ノードの設定	
		•	フロー	
		•	サブフロー	
			パレットの管理	
			設定	
			ショートカットキーの説明	3
			Node-REDウェブサ <u>イト</u>	
		,	v0.19.5	

3分クッキング

switch ノードを編	集	
削除		中止 完了
> プロパティ		
◆名前 プロパティ	名前 ▼ msg. isValid	
	▼	
is false	•	$\rightarrow 2$ x
最初に合致した	条件で終了	\$
□ メッセージ列	の補正	

HTTPサーバ (API)

API-HTTPサーバで使うNode-

HTTPエンドポイントを作成し、HTTPリクエストを受け 付けます。

HTTPノードで受け付けたリクエストに対し、レスポン スを返します。

API-レスポンスの作成に使うノード-

テンプレートに基づいて文字列を生成します。

ルールに基づいてメッセージを変更したり、変数の操 作を行います。

- O HTTPリクエストを /hello エンドポイントで受け付ける
- 文字列を含むJSONを生成する
- O HTTPレスポンスとして返す

Hello World! - HTTP Inノードの設定-

- 1. HTTP inノードをダブルクリック
- 2. メソッド「GET」
- 3. URL [/hello]

http in ノードを編集				
削除		中止	完了	
~ プロパティ				
〓 メソッド	GET		\$	
O URL	/hello			
▶ 名前	名前			

Hello World! -Templateノードの設定-

- 1. Templateノードをダブルクリック
- 2. 設定先「msg.payload」
- 3. 形式「Mustacheテンプレート」
- 4. テンプレート構文「JSON」
- 5. テンプレート内容を入力
- 6. 出力形式「JSON」

template ノードを	編集			
削除			中止	完了
✓ プロパティ				
▶名前				
名前				
ぼ 設定先	▼ msg. payload			
>/>形式	Mustacheテンプレート 💲			
励 テンプレート		構文:	JSON	\$
1 • { 2 "me 3 • }	essage": "hello world!"			
→ 出力形式	JSON \$			

Hello World! -動作確認-

ブラウザから作成したエンドポイントにアクセスする

- http://(raspberrypi σ IP $\mathcal{F} \vdash \mathcal{V}\mathcal{X}$):1880/hello
- http://127.0.0.1:1880/hello

完成したフローを読み出し

1. メニューをクリック

- 2. 「読み込み」
- 3. 「ライブラリ」
- 4. **FAPIJ**

			━∕■ デプロイ →	≡
		•	表示	
	クリップボード	•	読み込み	
dht11	< ライブラリ	•	書き出し 	
			ノードを検索	
			ノードの設定	
		◀	フロー	
		•	サブフロー	
			パレットの管理	
			設定	
			ショートカットキーの説明	
			Node-REDウェブサイト	
			v0.19.5	

3分クッキング

完成したフローを読み出し

1. メニューをクリック

- 2. 「読み込み」
- 3. 「ライブラリ」
- 4. 「GPIO」

GPIOノードの番号を修正してください

			■/■ デプロイ ▼	≡
		↓ ∄	長示	
	クリップボード	 € 	売み込み	
dht11	< ライブラリ	↓ ∄	髻き出し	
			ノードを検索	
			ノードの設定	
		• 7	70-	
		↓ †	ナブフロー	
		,	ペレットの管理	
			没定	
		1	ショートカットキーの説明	1
		Ň	lode-BEDウェブサイト	
		v	0.19.5	

3分クッキング

APIフローの「link out」ノードをダブルクリック
 表示された「link in」ノードにチェックをつける
 「完了」をクリック

「API」フローと「GPIO」フローが接続される

API-動作確認-

○ ブラウザからHTMLを返すエンドポイントにアクセスする

- http://(raspberrypiのIPアドレス):1880/top/
- http://127.0.0.1:1880/top/
- 定期的にセンサーの値がAjaxで更新される
- ボタンを押すとLEDが操作できる

Zabbixへのメトリクス送信

Zabbixとは

サーバー、ネットワーク、アプリケーションを監視するためのソフトウェアです。Zabbixは主に以下の3つの機能を有しています。

- サーバやネットワークに接続されたデバイスを監視する 監視機能
- 収集したデータをもとにグラフ化、ネットワークマップの作成を行うグラフィカル表示機能
- 収集したデータに閾値を設定し、障害/復旧時に管理者に
 通知を行う障害検知/通知機能

本来はサーバにZabbix Agentをインストールするが 今回はNode-REDからZabbix Serverに温湿度をメトリクスとして送信します

Zabbixへの送信 - 使うNode-

TCPサーバに接続し、入力されたmsg.payloadを送信。 応答をメッセージとして送出します。

任意のJavaScriptのコードを実行します。

完成したフローを読み出し

1. メニューをクリック

- 2. 「読み込み」
- 3. 「ライブラリ」
- 4. 「Zabbix」

		-/] デプロイ ▼ Ξ
		◆ 表示
	クリップボード	◆ 読み込み
dht11	< ライブラリ	◆ 書き出し
		ノードを検索
		ノードの設定
		◆ フロー
		◆ サブフロー
		パレットの管理
		設定
		ショートカットキーの説明 Node-REDウェブサイト v0 19 5
		0.10.0

3分クッキング

Zabbixへの送信 -ホスト名の設定-

Injectノードをダブルクリック
 ペイロードに各々のホスト名を入力

inject ノードを編集						
削除	中止					
> プロパティ						
■ペイロード	 ^a_z raspberrypi-test 					
■ トピック						
	□ Node-RED起動の 0.1 秒後、以下を行う					
€繰り返し	指定した時間間隔					
	時間間隔 5 🗘 秒 💠					
▶ 名前	名前					
注釈: 「指定し ます。詳細はノ	た時間間隔、日時」と「指定した日時」はcronを使用し ′ードの「情報」を確認してください。					

Zabbixへの送信 -動作確認-

「デバッグ」タブを表示 "processed :2"の応答を確認

_棄 デバッグ		i 🕀 🔟 ¢	
		▼全てのフロ	i— 🛍
<pre>2018/11/15 1:05:50 node: e3b2fd5.5d msg:Object { topic: "", payload: ' "19a955d7.c9cdea", respo</pre>	¹⁸⁹⁹ "processed: 2; failed: nse: "success" }	0; total…", _msgid	:
2018/11/15 1:05:55 node: e3b2fd5.5d msg:Object	<pre>#899 "processed: 2; failed: se: "success" }</pre>	0; total…", _msgid	:
2018/11/15 1:06:00 node: e3b2fd5.5d	1899		
<pre></pre>	"processed: 2; failed: nse: "success" }	0; total…", _msgid	:
2018/11/15 1:06:05 node: e3b2fd5.5d msg : Object	1899		
<pre>> { topic: "", payload: ' "20ff43b6.20962c", respo</pre>	<pre>"processed: 2; failed: nse: "success" }</pre>	0; total", _msgid	:
2018/11/15 1:06:10 node: e3b2fd5.5d msg : Object	1899		
<pre>> { topic: "", payload: ' "a87daef5.22cf9", respon</pre>	"processed: 2; failed: se: "success" }	0; total…", _msgid	:

Zabbixへの送信 -動作確認-

- 1. http://zabbix.iw.ishikari-dc.jp/
- 2. ゲストとしてログイン
- 3. 最新データから自ホストの値を確認する

Latest data							× ×
							Filter 🍸
	Host groups Hosts Application	Raspberry Pi × type here to search type here to search	Select Show ite	Name ms without data v Show details			
			Apply Reset				
▼ Host		Name 🔺		Last check	Last value	Change	
 raspberrypi- 	test	- other - (2 Items)					
		Humidity		2018-11-15 01:18:09	63	+1	Graph
		Temperature		2018-11-15 01:18:09	25		Graph

○ 管理画面へのアクセスを制限してください

- 公開するエンドポイントと管理画面を別ポートにする
- パスワードを設定する

o etc.

- SDカードはできるだけRead Onlyにしてください
 - o aufsやoverlayfsなどを利用し、Read Onlyにする
- しっかりとした電源を供給してください
 - microUSBではなくピンヘッダから供給する
- Linuxに対する一般的なセキュリティ対策をしてください