

C3 光メディア基礎 高速化するイーサネット技術を支える光デバイスの最新動向

2021年11月22日 株式会社ブロードバンドタワー 佐伯尊子

会社概要

会 社 名株式会社ブロードバンドタワー
BroadBand Tower, Inc.

設 立 年 月 日 2000年2月9日

所 在 地 東京都千代田区内幸町2-1-6 日比谷パークフロント

資 本 金 33億31百万円 (2020年12月31日 現在)

事業セグメント コンピュータプラットフォーム事業 IoT/AIソリューション事業、メディアソリューション事業

代 表 者 代表取締役 会長兼社長 CEO 藤原 洋

売 上 高 146億60百万円 (2019年 12月 連結)

株 式 市 場 JASDAQ: 3776

事業概要

自己紹介

■佐伯尊子

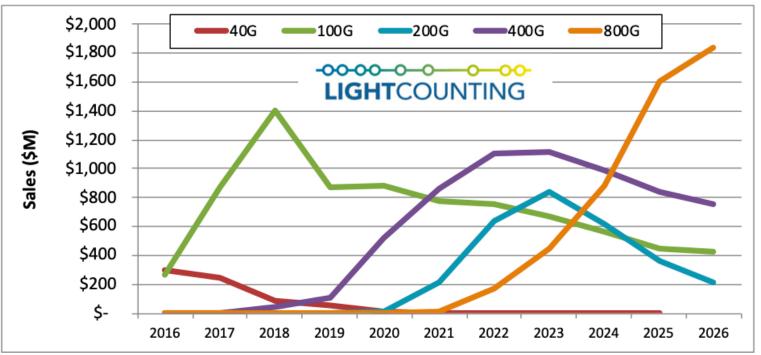
●【略歴】

光ファイバ製造メーカーで、光通信の基礎を学ぶ データセンターの構築・運用・コンサルティング 商用IXの構築・運用 通信配線等のコンサルティング

●【取得資格】

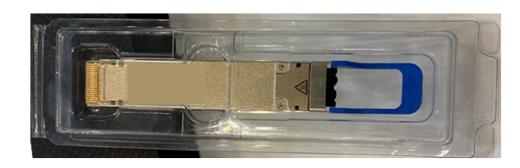
RCDD·DCDC (BICSI), CDCE (epi) 線路主任技術者 工事担任者(AI·DD総合種) 情報配線施工技能士

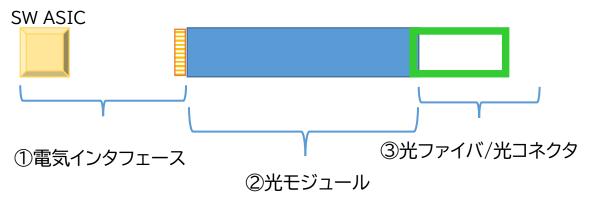
本資料は、筆者の視点からの記述であり、弊社 の公式な見解と異なる場合があります。


Ethernetトランシーバの速度別売り上げ予想

■ 2025年は800Gbpsの時代か

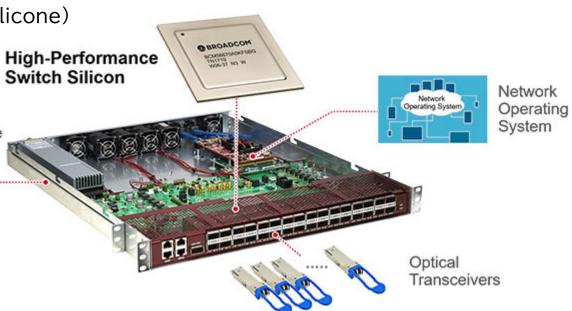
- Alibaba, Amazon, Facebook, Google, Microsoft 5社の動向
- Googleは 4~5年後に 1.6Tbpsの トランシーバを 導入開始予定




800G Ethernet Transceivers will Eclipse Sales of Lower Speed Modules by 2025.

3つの技術がそれぞれバランスを取って進化中

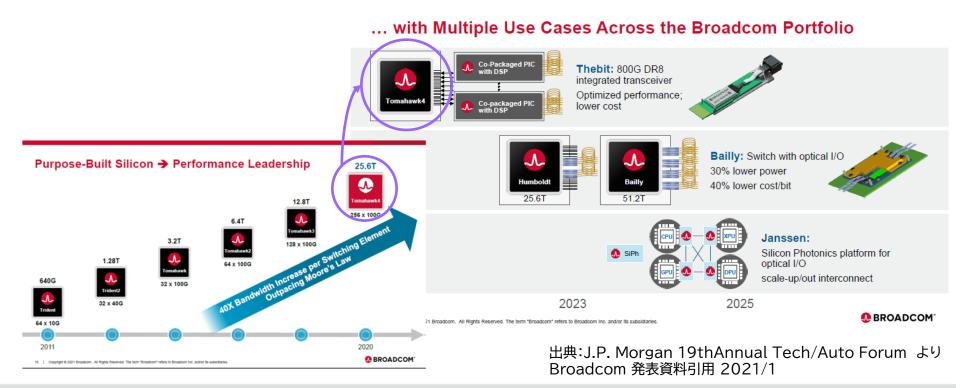
- 100Gbps超のネットワーク
- ① 電気インターフェース
- ② 光モジュール
- ③ 光ファイバ/光コネクタ



スイッチ側の仕様

- Broadcom社の動向が業界動向
- キーワード
 - マーチャントシリコン (merchant silicone)
 - サーディス (Serdes)
- このチップが、スイッチの

処理能力を決める。Platform Hardware



出典:Broadcom Blogs 2021/10 より

① 電気インターフェース

■ Tomahawk4 25.6Tの先へ

①電気インターフェース

■チップとポートの関係

年	処理速度	プロセス	100G port	200G	400G	800G	1.6T
2015	3.2Tbps	28nm	<mark>32</mark>	(16)	(8)		
2017	6.4Tbps	16nm	64	(32)	(16)		
2018	12.8Tbps	16nm	(128)	(64)	<mark>32</mark>	(16)	
2020	25.6Tbps	7nm	(256)	(128)	64	(<mark>32</mark>)	
2022	25.6Tbps				(64)	32	(16)
2023以降?	51.2Tbps					64	32

- 1Uの場合の、実装ポート数
- 全て同一速度に固定した場合

Problem: Switch Real Estate is Fixed

First Deployed	Electrical I/O [Gb/lane]	Switching Bandwidth	TOR/Leaf Data Center Switch Configuration	
~2010	10G	1.28T	32×OSFP+(40C)	
~2015	25G	3.2Т	32×QSFP28 (100G)	Where we are today
~2020	50G	12.8T	32 ports of (400G)	Today and Tomorrow
~2023+	100G	25.6T	32 ports of (800G)?	Future generations

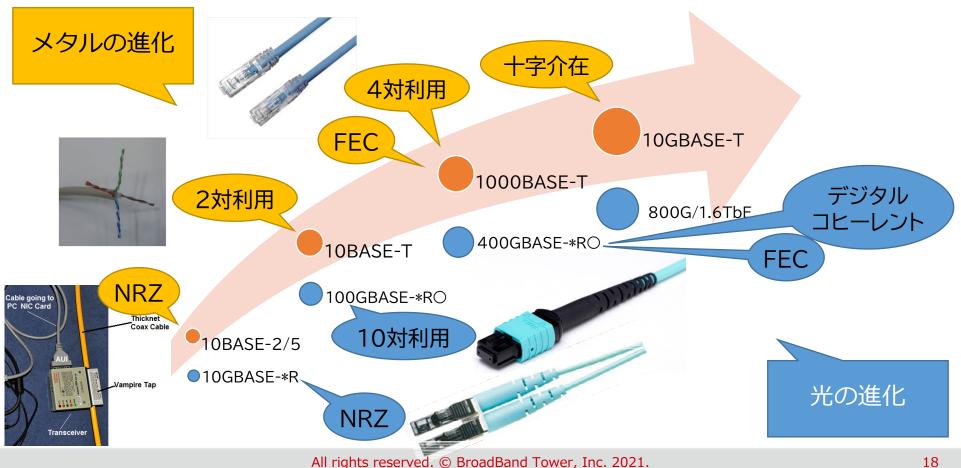
出典:Commscope Blog

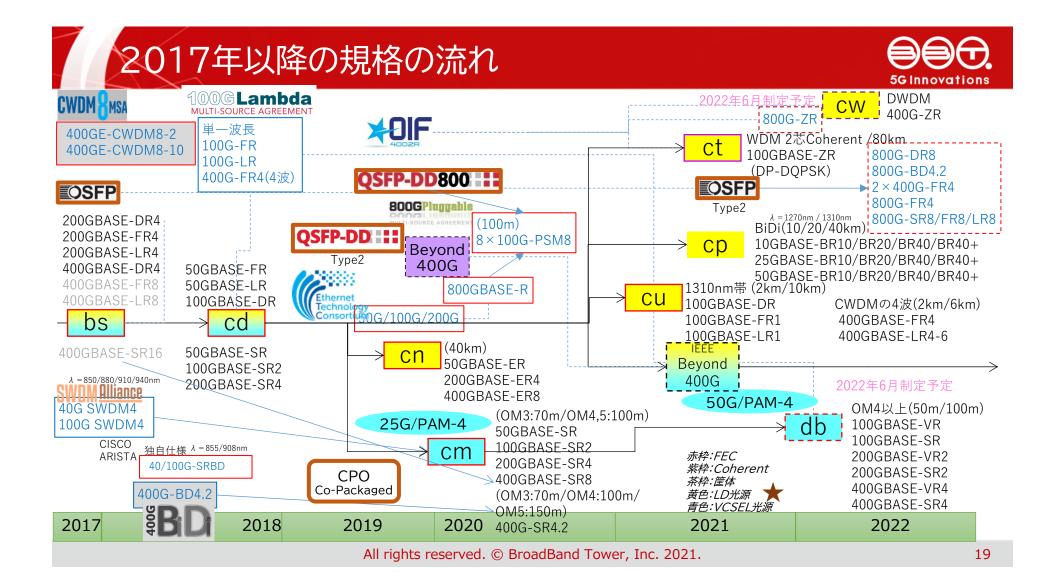
Regardless of Switching Bandwidth only 32 QSFP ports per 1U switch are available

Considering the Move to 400Gb より 2021/5 All rights reserved. © BroadBand Tower, Inc. 2021.

② 光モジュール

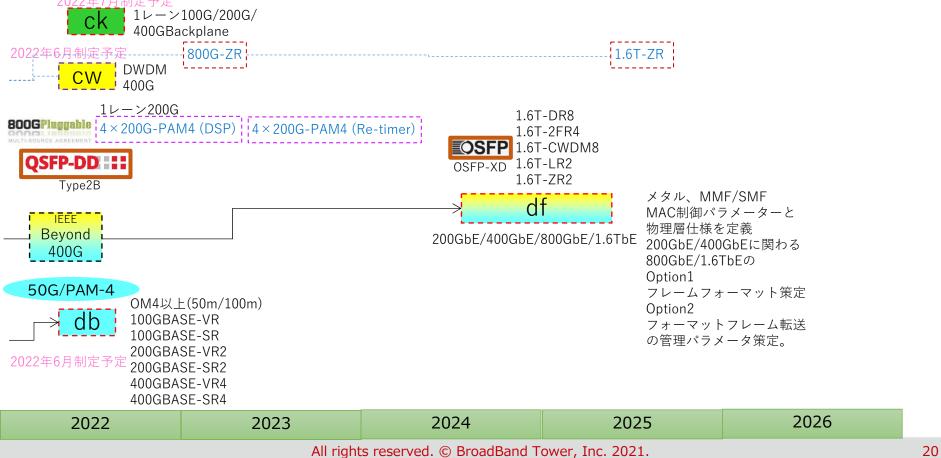
- 混沌が混沌を呼んでいる状況
- 10Gbps時代
 - 通信方式:SR·LR/LW·ER/EW
 - LAN仕様と、WAN仕様の2種類→LAN仕様のみ生存
 - 利用光ファイバ: MMF/SMF
 - 利用コネクタ: Duplex SC / Duplex LC
 - 光モジュール形状 XENPAK/SFP+
- 100Gbps時代
 - 通信方式:NRZ/PAM4
 - 利用光ファイバ: MMF/SMF
 - 利用芯数:1芯/2芯/8芯/20芯
 - 利用コネクタ:LC/Duplex LC/MPO-12
 - 光モジュール形状:CFP/CFP2/QSFP28


② 光モジュール



- 混沌が混沌を呼んでいる状況
- 400Gbps時代
 - 通信方式:NRZ/PAM4/Coherent
 - 利用光ファイバ: MMF/SMF
 - 利用芯数: 2芯/8芯/20芯/32芯
 - 利用コネクタ:LC/Duplex LC/CS/SN·MDC/MPO-12·MPO-16
 - 光モジュール形状:QSFP-DD/OSFP/CFP2
- 800Gbps時代はどうなる?
 - 通信方式は?
 - 利用光ファイバは?
 - 利用芯数は?
 - 利用コネクタは?
 - 光モジュール形状は?

高速化の考え方



2022年以降の規格の流れ

800G以上の速度に対応するMSAまとめ

■ LAN/MAN

■ IMDD方式による実現

団体名		推進規格	初期の主なメンバー
Ethernet Technology Consortium	Ethernet Technology Consortium	800GBASE-R 800Gのデータ変換部分のコー ディング(MAC副層、FECなど)	Arista、Broadcom、 Cisco、Dell、Google、 Microsoft
QSFP-DD ::: QSFP-DD800 :::	QSFP-DD800 MSA	距離の自由度はPluggableよりも高い。2階建ゲージ/コネクタを検討中	Broadcom、Cisco、 Juniper、Intel、Molex、 Marvell、samtec、 Finisar
EOSFP	OSFP MSA	8x50Gによる400Gの実現 形状、電気インターフェイス、ピン 配置、管理インターフェイス等の 仕様策定	Arista、Broadcom、II-VI、 Amphenol、TE、
800GPluggable MULTI-SOURCE AGREEMENT	800G Pluggable MSA Enabling Future Data Center Optics	100m、500m、2km 200G/laneで800G/1.6Tの 実現を目指す	Huawei、Inphi、 Lumentum、 Hisense,Fujitu、CIG、住 友、Tencent、百度

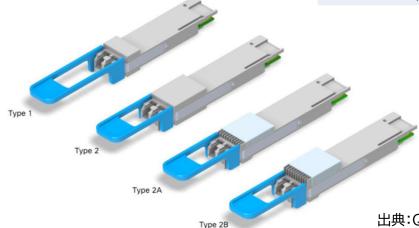
All rights reserved. © BroadBand Tower, Inc. 2021.

400G以上の速度に対応するMSAまとめ

■ WAN/DCI

● デジタルコヒーレント方式による実現

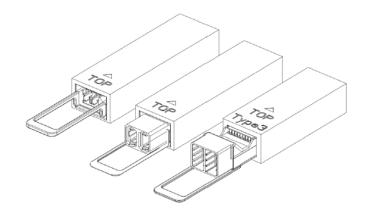
団体名		推進規格	初期の主なメンバー
*OF	電気、光、および制御の相互 運用性を推進する唯一のグ ローバルな業界フォーラム	400GBASE-R(400GbE)(クライアント信号)を伝送する 400G-ZR 800G-ZR/1.6T-ZR	OIFは、殆どのプレイヤーが 参加している。
OpenZR+ MULTI-SOURCE AGREEMENT	OpenZR+ MSA OFECの利用	クライアント信号は、 100G/200G/400GbE	NEL、Arista、Cisco、 Junipar、Lumemtium、 Fujitsu、innolight
Open ROADM	OpenROADM MSA	SDNによるROADMのコントロールなど。	AT&T、Ciena、Fujitsu、 Orange、Cisco、Juniper、 Infinera、KDDI、 Lumentum、NTT、Inphi、 II-VI

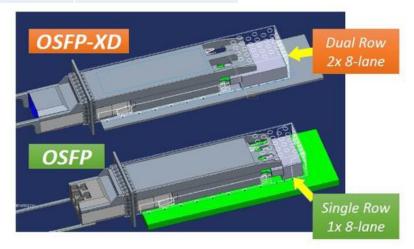

② 800Gを実現する光モジュール

QSFP-DD

Туре-1	Туре-2	Туре-2А	Type-2B (QSFP-DD800)
400G-DAC	400GBASE-*R	400G-ZR	800G
14W	20W	20W	20W
QSFP28	QSFP56	QSFP56	QSFP112
5×3.4mm(?)	10×3.4mm(?)	22*×3.4mm	22*×5.1mm

* 最小値


出典:QSFP-DD MSA より、QSFP-DD仕様書6.01 2021/5

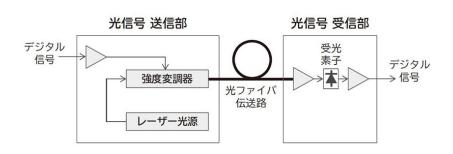

② 800G超を実現する光モジュール

■ OSFP、OSFP-XD (eXtra Dence)

Type1	Type2	Type3 (OSFP-XD)
400Gbps	800Gbps	1.6Tbps
15-19.8W	21W	33W

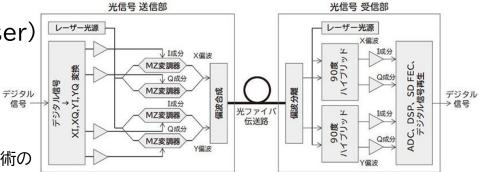
出典:OSFP MSA より、OSFP仕様書 4.1 2021/8

課題


- ■通信方式
- IMDD
- デジタルコヒーレント
- ■低消費電力
- SiP
- 新しいO/E E/Oの形
- COBO
- CPO

通信方式 IMDD vs Coherent

■ IMDD (Intensity Modulation-Direct Detection) 方式


: 直接変調-直接検波

■ デジタルコヒーレント 方式

DSP (Digital Signal Processer)

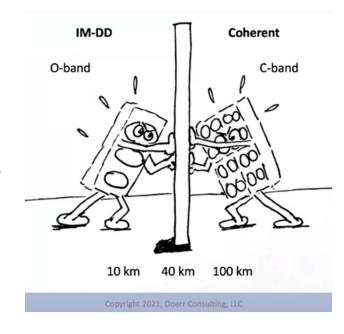
● 部品点数が多い

出典: NEC技報 光デジタルコヒーレント通信技術の 開発(Vol. 68 No. 3 2016年3月)

IMDD 直接変調-直接検波

- NRZ (non-return-to-zero)
- IEEE802.3ba (100GBASE-SR10/LR4など)までは、光のオンオフだけで実現
- PAM-4 (Pulse Amplitude Modulation 4)4値パルス振幅変調
 - IEEE802.3bm (400GASE-SR16/LR10など)で初めて採用。必ずFECを掛けて誤り訂正する。
- NRZとPAM-4
- NRZは、FEC(誤り訂正)が無いため、低速や、光ファイバ線路の状態が良いところに適している。
 - 10Gbps程度まで。
 - 損失が少ない
 - コネクタの反射減衰量が高い
- PAM-4
 - NRZ方式では通信が不安定なところでも、PAM-4(FECを掛けることで)だと安定した通信が可能

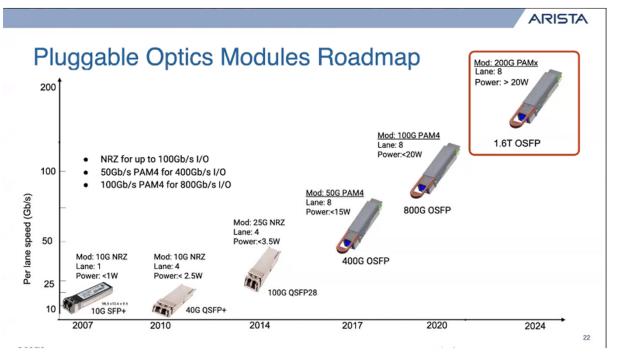
デジタルコヒーレント


- OTNなどWANでの利用が最初
 - OTN4による100Gbps伝送の実現
 - 400G-ZR
- DSP (Digital Signal Processor) を使って、信号をゴリゴリ変換
- DSPが、長距離だろうが、光ファイバ損失だろうが、魔法をかけてくれる。
- 400Gbps以上の超高速
- 長距離
- 光ファイバの芯数の少ないところ

WDM=DCIとの相性良し

改めてIMDD vs デジタルコヒーレント

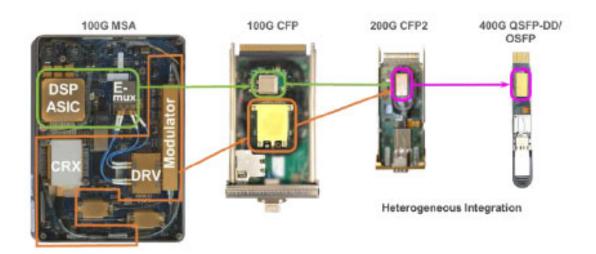
- 40km辺りが分岐点か?
- 1Gbps当たりのコスト
- 発熱量
- **■** IMDD
- FECの工夫
- PAM-4以外の変調方式
- デジタルコヒーレント
- DSP light



出典:OFC2021 Acacia Communications Christopher Doerr氏イラスト

低消費電力

- ■エネルギー効率
- モジュール単位で消費電力の W表示
- pJ/bit を用いた評価がネットワークスイッチにも導入か?



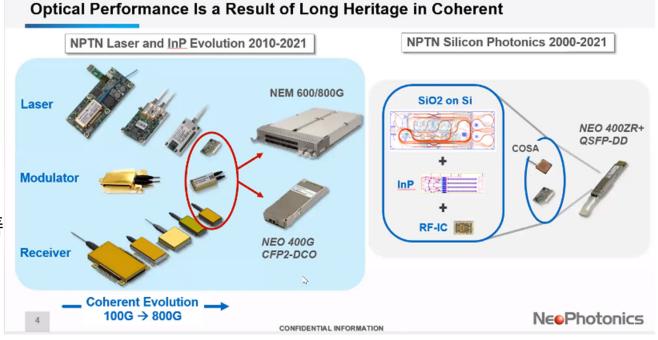
出典:OFC2021 S2A Pluggable Coherent Technologies and Applications: Where Will We Land in 5 Years? AristaのAndreas Bechtolsheim氏によるプレゼン資料

光モジュールの小型化例

■ 高速化すると共に、処理技術もパッケージ化、縮小化されている。

出典:Acacia Communication "Accessible 400G for Edge DCIs and Beyond"より https://acacia-inc.com/wp-content/uploads/2019/07/400ZR-Market-Backgrounder_June2019-FINAL1.pdf

低コスト・低消費電力に向けて



■ シリコンフォトニクス技術の強み

- 部品の小型化
- 低消費電力化

■ 課題

- 温度特性
- 品質の安定性
- LDの組み込み
- Siウエハー素材の改善

出典:OFC2021 NeoPhotonics社 Wupen Yuen氏プレゼン資料より

シリコンフォトニクス有力各社

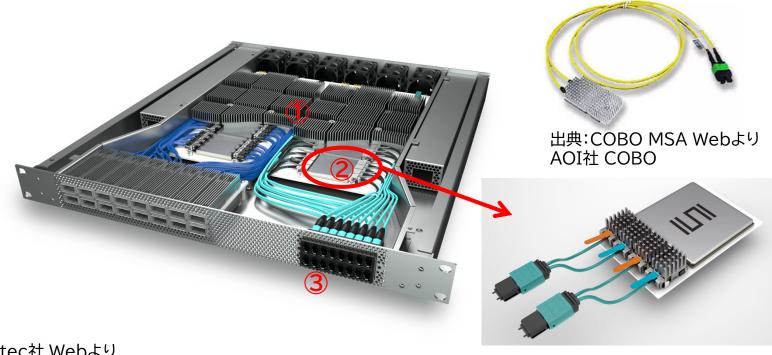
光モジュールプレイヤーのシリコンフォトニクス技術サプライチェーン

Silicon photonics supply chain for optical transceivers

(Source: Silicon Photonics 2021 repart, Yale Développement, 2021)

出典:Yole Developement "Silicon Photonics 2021 report" 2021/5

新しいO/E E/O の形



- 光モジュールの限界
- 延命説:Arista/Google
- 変化説:Meta
- 寿命説:Microsoft

COBO (The Consortium for On-Board Optics)

■ 光モジュールと比べ、機器内の配置の自由度が高いが、ヒートシンクが大きい。

出典:Samtec社 Webより

CPO (Co-packaged Optics)

ARISTA

■ スイッチASIC (SerDes)の 傍に最も近づけ て処理を行う。

RANOVUS" IBM

Co-Packaged Optics Switch

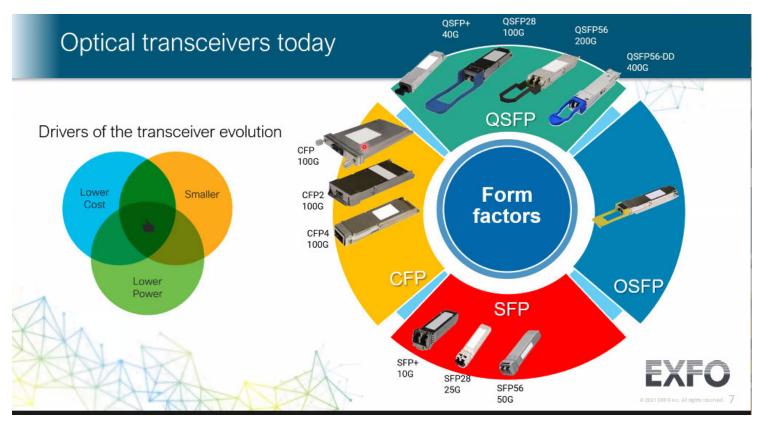
Packaging Study
(not an actual product)

51.2 Tbps in 1U 128 400G ports

Four Optical Tiles 128 lanes each

Four Laser Sources driving 128 lanes each

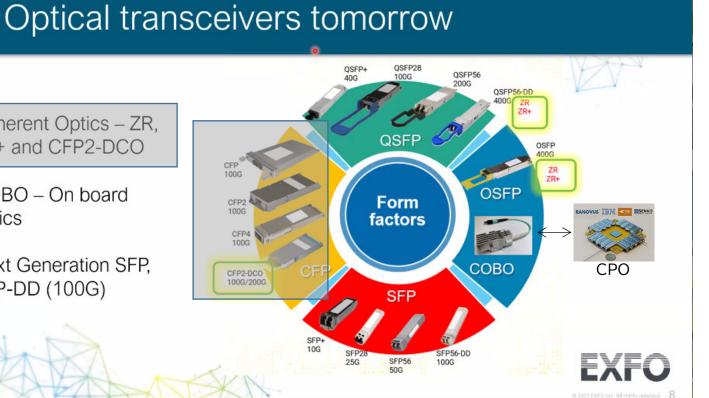
Double Density compared to pluggable


Image Courtesy of Luxtera

出典:OCP Andy Bechtolsheimの講演プレゼン資料より 2020/3

光モジュール形状の変化

■現状

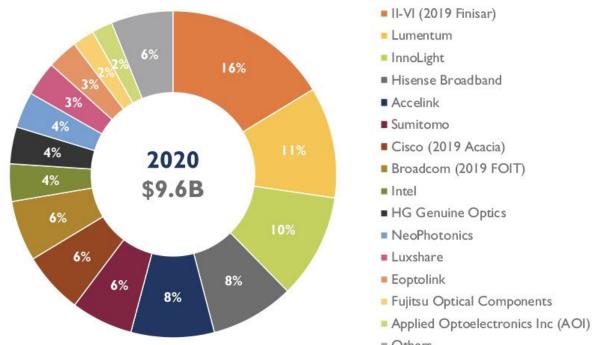


光モジュール形状の生き残り

■次世代

- Coherent Optics ZR, ZR+ and CFP2-DCO
- COBO On board optics
- Next Generation SFP, SFP-DD (100G)

光モジュールのマーケット



■ マーケットシェア

- 1. II-VI···16%
- 2. Lumentum···11%
- 3. InnoLight···10%

2020 optical transceiver market shares

(Source: Optical Transceivers for Datacom & Telecom Market 2021, Yole Développement, July 2021)

出典:Optical Transceivers for Datacom & Telecom Market 2021 report, Yole Developpement 2021/7

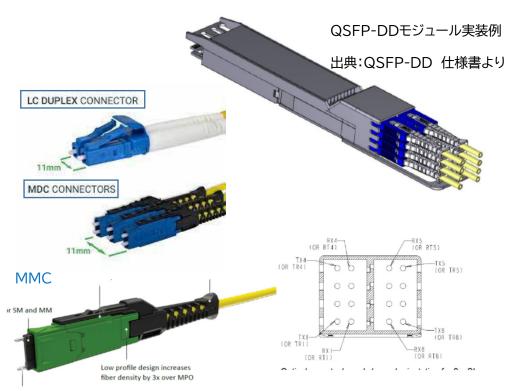
光ファイバ

- SMFなのかMMFなのか??
- MMF:OM3以上を対象
- IEEE802.3dbだと、OM3で30m(目安)程度までしか延伸できない。→OM4以上

光コネクタは、VSFF (Very Small Form Factor)も

■ SFFより更に小さい (コネクタ)形状

SFF: LC

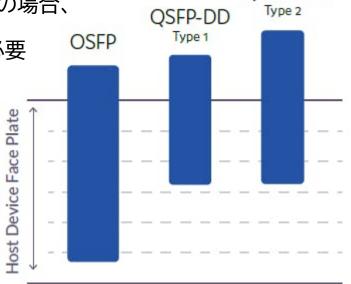

VSFF: CS, SN, MDC

VSFF: SN-MT, MMC

■ 分岐・COBO/CPOの内部利用

出典:センコーアドバンス、US Conec Webページより

All rights reserved. © BroadBand Tower, Inc. 2021.


光モジュールを使う上で注意すること

■ 前面にどんどん突き出してくる

- ドアとのクリアランスが更に狭くなる
- ▼ マウントフレーム(ラック柱)の位置の問題は、予め注意しておく。QSFP-DD

サーバとの共存ラックの場合、 マウントフレームの 下げ過ぎにも注意が必要

既存コネクタも見直しを

- ■コネクタブーツへの要望
- マウントフレームの背面移動だけでは不十分
- ショートブーツコネクタの活用
- ショートブーツ=曲げに強い光ファイバの利用

出典:精工技研画像より

400Gbps超時代の注意点

- コネクタ端面の清掃のさらなる徹底
- 400Gbps/800Gbpsと、光源の数が増える→光パワーの増大
- 専用クリーナ―の利用
- コネクタ接続損失・反射減衰量の低減へ
- COBO/CPOは、端面清掃が楽
- パッチパネルと同じ(メス側にレンズが無い)。
- SMFの場合、PMD (Polarization Mode Dispersion: 偏波モード分散)にも 気を付ける。
- 敷設線路のマイクロベンド等への注意が必要

単に光モジュールの速度だけではない

■高速化

- 電気インターフェースと相互に進化
- 400Gbps→800Gbps→1.6Tbps
- IMDDとCoherent

■ 実装技術

- シリコンフォトニクス
- 低消費電力だけでなく、光モジュールやCOBO/CPOへの適用

■低消費電力

光モジュールから、COBO (On Board Optics)やCPO (Co-Packaged)へ

今から出来ること

■実装

- 光モジュールは、前面突出型へ
- 今から対応できること
- ラックのマウントフレームは下げておく
- ショートブーツのコネクタを用意する

