デュアルスタック時代の AWSクラウド活用

IPv6環境構築の勘所とベストプラクティス

菊地 信明

アマゾン ウェブ サービス ジャパン合同会社 技術統括本部 ネットワークリューション本部 シニアソリューションアーキテクト ネットワークスペシャリスト

自己紹介

名前:菊地信明(きくちのぶあき)

所属:アマゾン ウェブ サービス ジャパン合同会社

サービス&テクノロジー事業統括本部

ネットワークソリューション本部

シニアソリューションアーキテクト ネットワークスペシャリスト

鉄道系IT子会社-設計・開発・運用に従事

AWSサポート- AWS Direct Connect/AWS VPNをサポート

好きなAWSサービス:

AWS Direct Connect, AWS Transit Gateway, AWS VPN

Program

1.はじめに

- ◆ 本セッションのゴール
- ◆ IPv4/IPv6デュアルスタックの現状と課題

2.クラウドのIPv6ネットワーク設計の基本

- ◆ デュアルスタック環境の基本概念
- ◆ IPv6アドレス プライベートとパブリック の使い分け

3. IPv6環境構築のベストプラクティス

- ◆ サブネット設計とアドレス割り当て最適化
- ◆ ロードバランサーやCDNを用いた可用性

4. IPv6環境における注意点と対策

- ◆ デュアルスタック環境特有の考慮事項
- ◆ 運用管理とセキュリティの実践

5.まとめ

◆ クラウドを活用した移行戦略のポイント

1. はじめに

本セッションのゴール

本セッションのゴール

- ・AWSクラウドを利用した際のアドレス設計について理解する
- ・IPv4アドレスとIPv6アドレスを併用する場合のポイントについて学ぶ
- ・ハイブリッド環境を運用する際のヒントを得る
- ・クラウドを利用した次世代ネットワークの実現方法のコツをつかむ

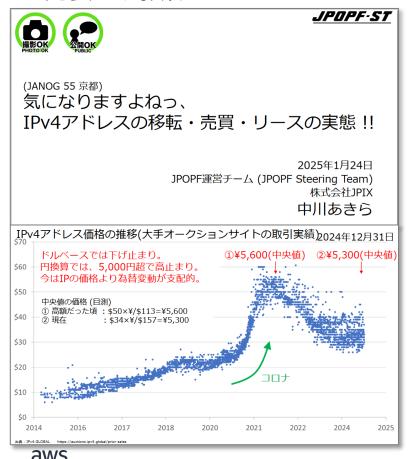
解説・お話しないこと

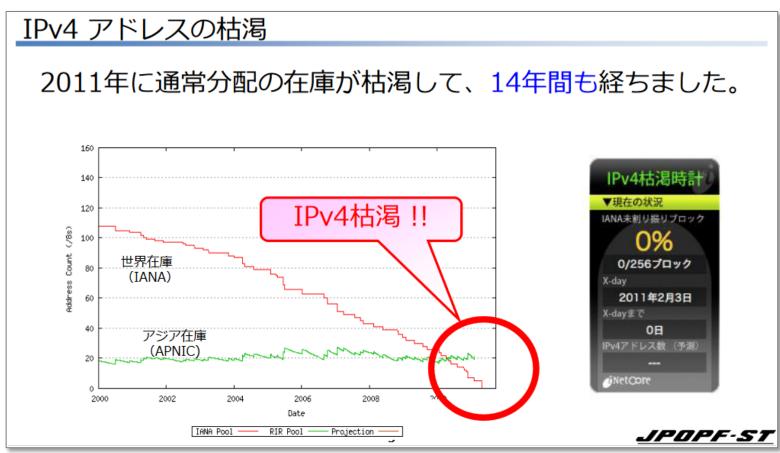
- IPv4/IPv6アドレスの基本的なこと
- ・ネットワーク技術の基本的な用語
- プロトコルの詳細

IPv4/IPv6デュアルスタックの現状と課題

なぜ『今』IPv6なの?

IPv4アドレスだけでうまくいっている方たちむけ、以下のようなおこころあたりありませんか?


- 1. 知らないうちに直面している制約
 - A) プライベートIPv4アドレスの重複を気にしながらネットワーク設計
 - B) 最小限のIPv4 CIDRアサインで、制限のある構成
- 2. 見えにくくなっているコスト
 - A) プライベートIPv4アドレス重複のためにNATやProxy機能を追加
 - B) 仕方なく夜間・休日にプライベートIPv4アドレスリナンバー祭り
 - C) パブリックIPv4アドレスの値段高騰
- 3. 将来的なビジネスリスク
 - A) 会社の統廃合で得られるはずのシステム共有メリット、結果的にコスト増
 - B) ネットワークをつなげるたびに、パズルのようなプライベートIPv4アドレス設計



IPv4の現状

パブリックIPv4アドレスは、すでに枯渇、調達コストも高止まり

JANOG 55 京都「気になりますよねっ、IPv4アドレスの移転・売買・リースの実態!!」中川 あきらさん の発表より抜粋

クラウド事業者もパブリックIPv4アドレス有料化

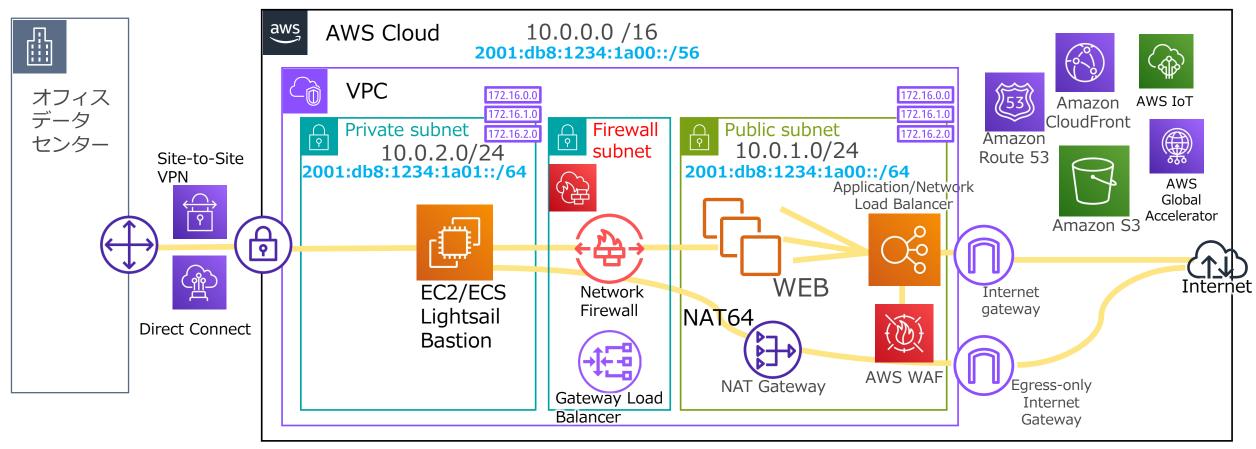
AWSでは、2024年2月からパブリックIPv4アドレスに新料金体系を適用し、IPv4アドレス利用の再検討を呼びかけ、IPv6採用を推奨

Amazon Web Services ブログ

新着情報 – パブリック IPv4 アドレスの利用に対する新しい料金体系を発表 / Amazon VPC IP Address Manager が Public IP Insights の提供を開始

by Yuya Sudo | on 30 7月 2023 | in Amazon EC2, Announcements, Launch, News | Permalink | ┍ Share

AWS は、パブリック IPv4 アドレスの利用に対して新しい料金体系を導入します。2024 年 2 月 1 日より、特定のサービスに割り当てられているかどうかに関わらず、すべてのパブリック IPv4 アドレスの利用に対して 1 IP アドレスあたり 0.005 USD/時間 が課金されます(アカウントに払い出されているものの、 どの EC2 インスタンスにも割り当てられていないパブリック IPv4 アドレスに関しては、すでに課金が適用されています)。


パブリック IPv4 アドレスの新しい料金体系

IPv4 アドレスはますます希少な資源となっており、パブリック IPv4 アドレスを取得するためのコストは、過去 5 年間で 300% 以上上昇しています。この新しい料金体系の導入は、私たち自身のコストを反映したものであり、また、パブリック IPv4 アドレスの使用を節約し、モダナイゼーションおよび IPv4 アドレスの保全策として IPv6 の採用を奨励すること を意図しています。

⑥AWSクラウドにおけるIPv6の現状

VPC、EC2、ELB、Network Firewall、CloudFront、WAF、Route53、Global AcceleratorなどがIPv6対応

Egress-only Internet Gateway(EIGW) を利用して IPv6においてもプライベート利用が可能

上記のような構成をIPv4/IPv6デュアルスタックで構築可能

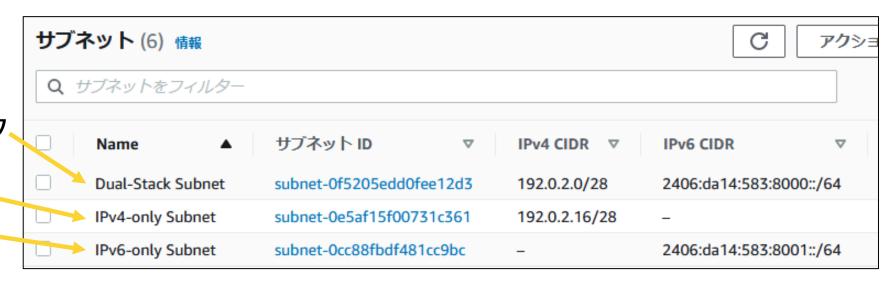
コンセプト: IPv6 in Amazon VPC (Virtual Private Cloud)

IPv4が基本、希望者はIPv6は追加利用可能

VPC: いずれかを選択

IPv4のみ

デュアルスタック

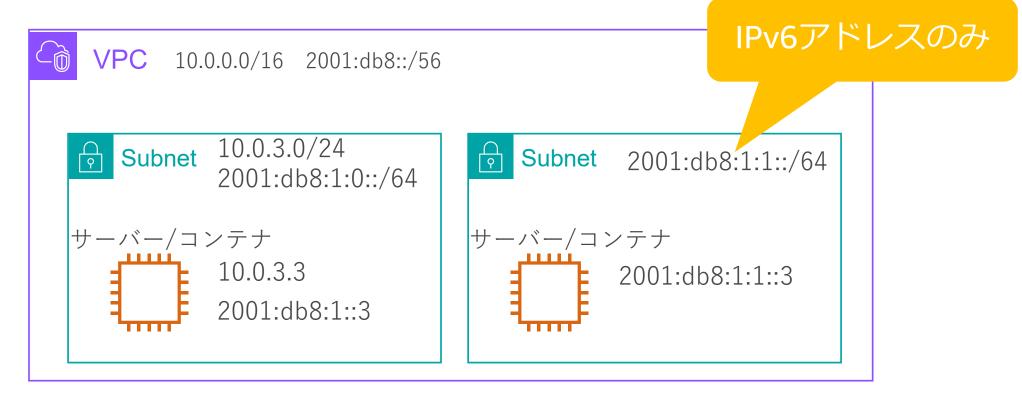


サブネット: いずれかを選択

デュアルスタック

IPv4のみ

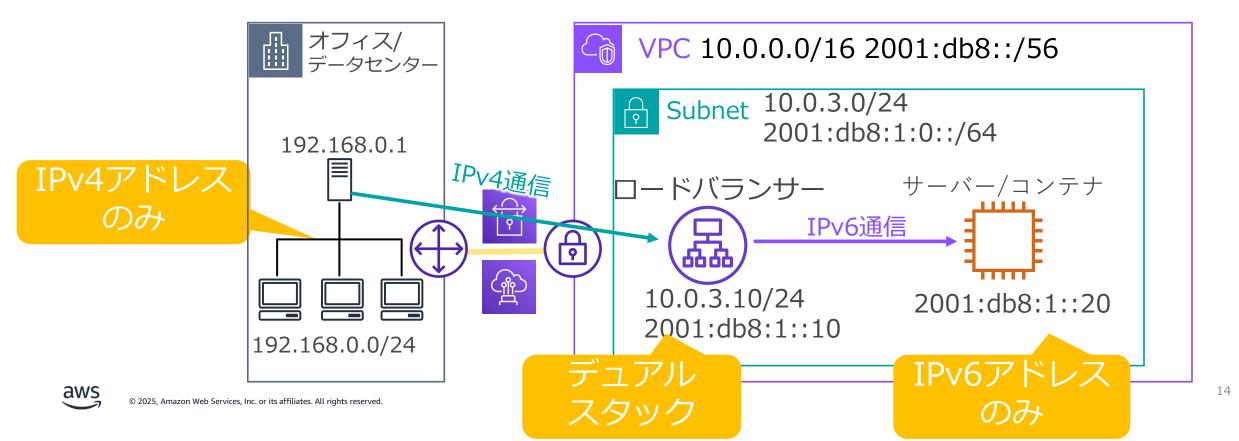
IPv6のみ



VPC上でのIPv6利用時の課題

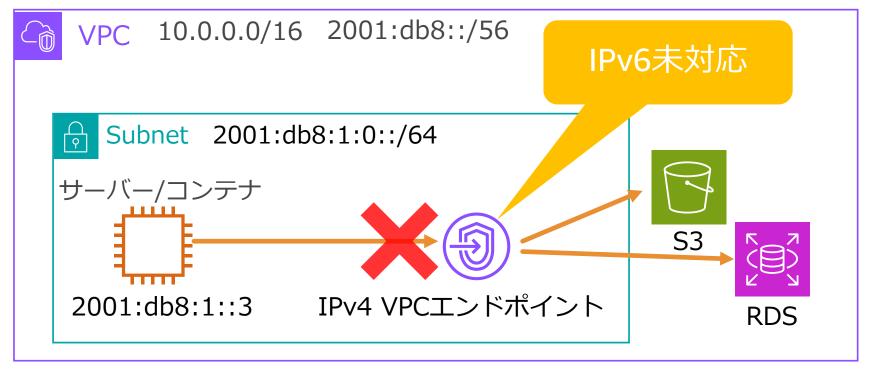
IPv6を有効化した場合には、VPC自体はデュアルスタック

- ▶ 要否にかかわらず、IPv4アドレスのアサインが必須
- ▶ 持ち込んだIPv6アドレスも利用できる。(BYOIPv6 JPNICを含む)
- ➤ 要件に応じて、IPv6のみのサブネットを作ることも可能



VPC上でのIPv6利用時の課題

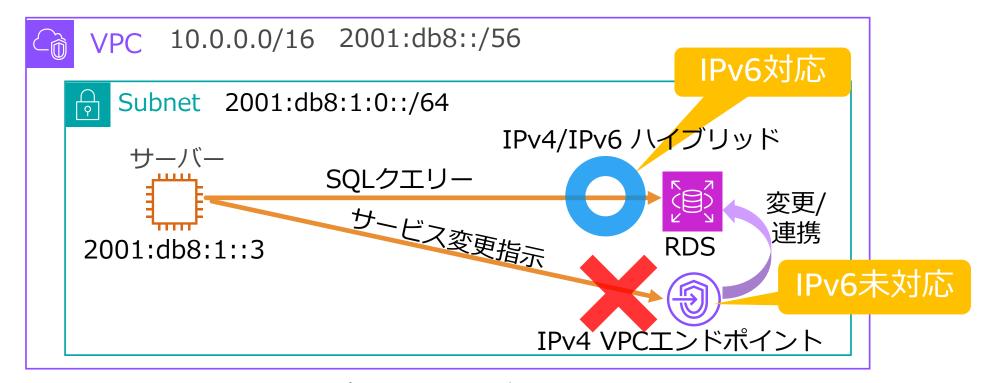
基本的なサービス・リソース間通信については、ほぼ問題になることはない


- ➤ クラウド上で完結する通信であれば、無料でIPv6化が可能
- ▶ オンプレミスから直接通信する際、オンプレミスホストがIPv6アドレスに未対応
- ▶ オンプレミスルーターでNAT46を実現するか、ロードバランサーなどで変換

未対応サービスの確認

先進的なユーザーによるAWSクラウド利用時に注意

- ▶ VPCエンドポイントと呼ぶ、AWSマネージドサービス操作の入り口となる機能が 未対応の場合
 - ➤ デュアルスタックや、IPv4~IPv6を変換する等の対策が必要



未対応サービスの確認(続き)

未対応の通信は何か?

- ▶ クラウドを利用するうえで、どの機能がIPv6を利用できないのか、確認が必要
 - ✓ データ通信がIPv6未対応の場合
 - ✓ サービス・リソースに対する変更指示通信がIPv6未対応の場合

公式ドキュメント: IPv6をサポートするAWSサービス

https://docs.aws.amazon.com/ja_jp/vpc/latest/userguide/aws-ipv6-support.html

IPv6 をサポートするサービス

次のテーブルは、デュアルスタックのサポート、IPv6 のみのサポート、および IPv6 をサポートする AWS のサービス を一覧しています。この表は、IPv6 の追加サポートがリリースされたときに更新されます。サービスが IPv6 をサポートする方法についての情報は、そのサービス用のドキュメントを参照してください。

サービス名	デュアルスタッ クサポート	IPv6 のみ サポート	パブリックエンドポイン トの IPv6 サポート	プライベートエンドポイ ントの IPv6 サポート ¹
AWS Amplify		⊗ いいえ	⊘ (はい	
Amazon API Gateway	⊘ (‡い	⊗ いいえ	⊘ (はい	⊘はい
AWS App Mesh	⊘ (はい	⊘ (はい	⊘ (はい	⊗いいえ
AWS AppConfig	⊘ (‡い	⊗ いいえ	⊘ (はい	⊘ はい
AWS Application Discovery Service	⊘ はい	⊗ いいえ	⊘ (はい	⊘ はい
Application Recovery Controller	⊘ (はい	⊗ いいえ	⊘ (はい	

2.クラウドのIPv6ネットワーク 設計の基本

デュアルスタック環境の 基本概念

仮想サーバー: EC2インスタンス内部の見え方

デュアルスタック環境でのipコマンド実行例

IPv4 Address IPv6 Address IPv6 Address (Link Local)

```
[ssm-user@ip-192-0-2-9 ~]$ ip address show dev sth0
2: eth0: <BRCADCAST,MULTICAST, JP,LOWER_UP> mtm 9001 qdisc mq s
    link/eth r 06:ac:c9:f3:35 6d brd ff:ff:ff:ff:ff
    inet 192.0.2.9/28 brd 192.0.2.15 scope global dynamic eth0
        valid lft 2716sec preferred lft 2/16sec
    inet6 2406:da14:583:8000:c19d:ed54/2ab6:6e12/128 scope glo
        valid lft 410sec preferred lft 100sec
    inet6 fe80::4ac:c9ff:fef3:356d/64 scope link
        valid_lft forever preferred_lft forever
```


仮想サーバー: EC2インスタンス内部の見え方

IPv6 Only環境でのipコマンド実行例

IPv4 Address (Link Local)

IPv6 Address

IPv6 Address (Link Local)

```
[ssm-user@i-0ai95398c621af394 /]$ ip address show dev eth0
2: eth0: <BROALCAST,MULTICAST,UP,LOWER_UP> mtd 9001 qdisc mq s
    link/ether 06:8a:f6:a2:51:bd brd ff:ff:ff:ff:ff:
    inet 169.254.110.48/32 scope global dynamic eth0
        valid lft 2128sec preferred lft 2128sec
    inet6 2406:da14:583:8001:8bf6:9041:f2ed:33c3/128 scope glo
        valid lft 407sec preferred lft 97sec
    inet6 fe80::48a:f6ff:fea2:51bd/64 scope link
        valid_lft forever preferred_lft forever
```


ルートテーブル、セキュリティグループ

IPv6もIPv4も同様に設定、動作する

仮想サーバー(EC2インスタンス)上では、DHCPから取得したデフォルトルートを採用、VPC機能で提供されるルートテーブルで制御する

ルートテーブルの例

セキュリティグループの例

Туре	Protocol	Port Range	Source
ALL UDP	UDP (17)	ALL	sg-84b760ed
ALL Traffic	ALL	ALL	0.0.0.0/0
ALL Traffic	ALL	ALL	::/0

DNSリソースレコード登録

Amazon Route 53: ホストゾーンを提供するDNSサービスで管理

- 同じホスト名で、IPv4、IPv6の両方をアクセスさせる設計、もしくは、ホスト名を分けて管理する設計等
- 同じホスト名の場合には、A RecordとAAAA Record(クワッドエーレコード)を 併記する

リソースレコード登録の例

レコード名 ▽	タ ▽	ルーテ ▽	差別 ▽	値/トラフィックのルーティング先 ▽
example.co.jp	NS	シンプル	-	ns-1536.awsdns-00.co.uk. ns-0.awsdns-00.com. ns-1024.awsdns-00.org. ns-512.awsdns-00.net.
example.co.jp	SOA	シンプル	-	ns-1536.awsdns-00.co.uk. awsdns-hostmaster
www.example.co.jp	Α	シンプル	-	192.168.20.100
www.example.co.jp	AAAA	シンプル	-	2406:da14:d2:c310:48ab:109a:65ba:9fae

IPv6アドレス プライベートとパブリック の使い分け

IPv6グローバルユニキャストアドレス(GUA)

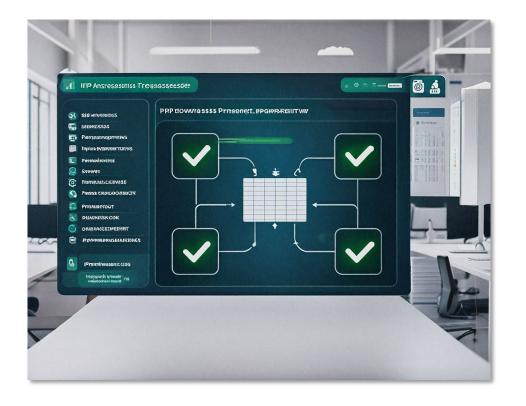
- IPv6を有効にしたVPCではグローバルユニキャストアドレス (GUA)をアサイン可能
 - IPv6アドレスは、Amazonから割り当てられるか、お客様が持ち込んだIPv6アドレス(BYOIPv6)を利用
- それぞれのインスタンスはGUAが付与される
- 1:1のNATは不要
- Egress Only Internet Gatewayによりアウトバウンド方向のみをトリガーとしたインターネットへ接続可能

IPv6ユニークローカルアドレス(ULA)

- Amazon VPC IP Address Manager (IPAM) ではユニークローカルアドレス(ULA)をVPCにアサイン可能
 - AWS内のみで利用する、プライベートなIPv6アドレスの役割
- GUAと使い分けすることで、IPv4に近い論理構成が可能
- ・インターネットへ接続する際には、別のサブネットにGUAを配置し、そちらを経由する

3.IPv6環境設計の ベストプラクティス

サブネット設計とアドレス 割り当て最適化


IPアドレス管理

オンプレミスと複数契約・アカウントにまたがるクラウドへの割り当てが必要

よくあるスプレッドシートの管理では重複アサインや残りの

アドレス帯把握に限界


・管理ツールの導入が理想

Amazon VPC IP Address Manager (IPAM)

AWS CloudとオンプレミスのIPを管理

IPの利用率を ダッシュボードで表示

重複利用し ているIPを 可視化

特徵 (https://docs.aws.amazon.com/ja_jp/vpc/latest/ipam/)

- IP アドレス空間をルーティングドメインとセキュリティードメインに整理する
- 使用中の IP アドレス空間を監視し、空間を使用している リソースをビジネスルールに照らし合わせて監視する
- 特定のビジネスルールを使用してCIDRをVPCに自動的に割り当てる

任意のIPv4/IPv6アドレスをBYOIPできる

価格体系 (http://aws.amazon.com/jp/vpc/pricing/)

- IPAM 無料利用枠 : BYOIP v4 および v6)と、Amazonが 提供する連続したIPv6アドレスを管理
- IPAM アドバンストティア:複数リージョンまたはアカウントを管理

既存のIPv4リソースのハイブリッド化

- ・すでにIPv4のみで設定された環境をハイブリッドに移行する ときのステップは3つ
 - ① Amazon Virtual Private Cloud(VPC)にIPv6 CIDR を追加
 - ② VPC内のサブネットにIPv6 CIDRを追加
 - ③ 仮想サーバー(EC2インスタンス等)にIPv6を追加

①VPCにIPv6 CIDRを追加

• IPv4 CIDR割り当て済みのVPCに対し、AWS提供またはユーザー持ち込み(BYOIPv6)のIPv6 CIDRを追加割り当てする

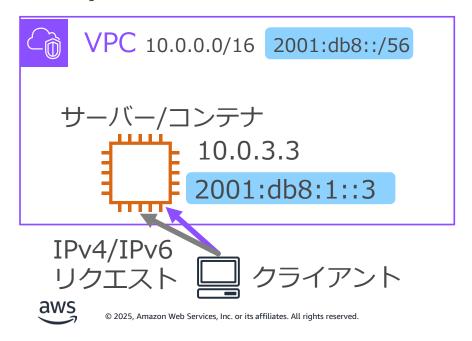
②VPC内のサブネットにIPv6を追加

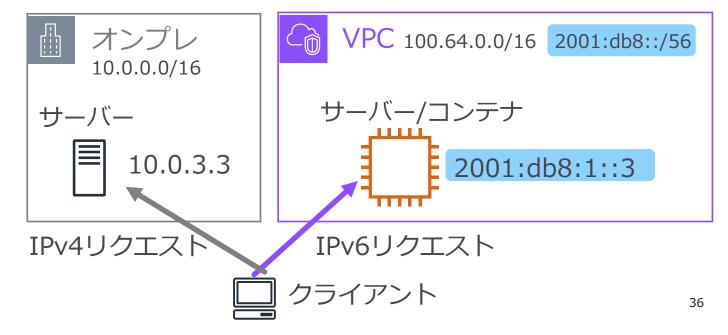
• IPv4 CIDR割り当て済みのサブネットに、VPCのIPv6 CIDR の範囲からIPv6 CIDRを追加で割り当てる

③仮想サーバー(EC2インスタンス等)にIPv6を追加

• IPv4 Address割り当て済みインスタンスのeth0に、サブネットの IPv6 CIDRの範囲からIPv6 Addressを追加で割り当てる

34


まずは、 IPv4とIPv6の ハイブリッドから始める

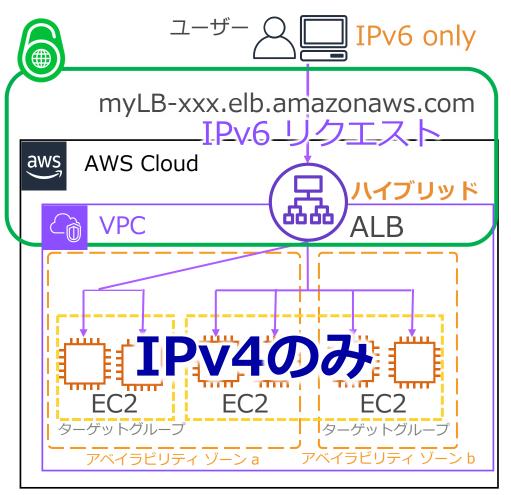

まずはハイブリッド

- ・現行のIPv4システムに、IPv6を追加するアプローチ
 - A) システムの更新タイミングで、クラウド上でハイブリッド構成を作ってみる
 - B) 既存のIPv4構成をオンプレミスで維持したまま、IPv6対応サイトをクラウド 上に構築する

A) クラウド上でハイブリッド

B) オンプレミスとクラウドで役割分担したハイブリッド

ロードバランサーや CDNを用いた可用性


動いているサーバーに 変更を加えられないとき

Application Load Balancer (ALB) ハンズオンで利用

レイヤー 7 のコンテントベースのロードバランサー

特徵 (https://aws.amazon.com/elasticloadbalancing/applicationloadbalancer/)

- レイヤー7のコンテントベースで、 ターゲットグループに対してルーティング
- コンテナベースのアプリケーションのサポート
- WebSocket, HTTP/2, IPv6, AWS WAF をサポート
- 複数のアベイラビリティゾーンに跨って、 高レベルの耐障害性を実現
- ALB自体が自動的にキャパシティを増減
- IPv6 Targetに対応 Update!!

価格体系

(https://aws.amazon.com/jp/elasticloadbalancing/applicationloadbalancer/pricing/)

- ・ ALBの起動時間
- ・Load Balancer Capacity Units (LCU)の使用量

Amazon CloudFront

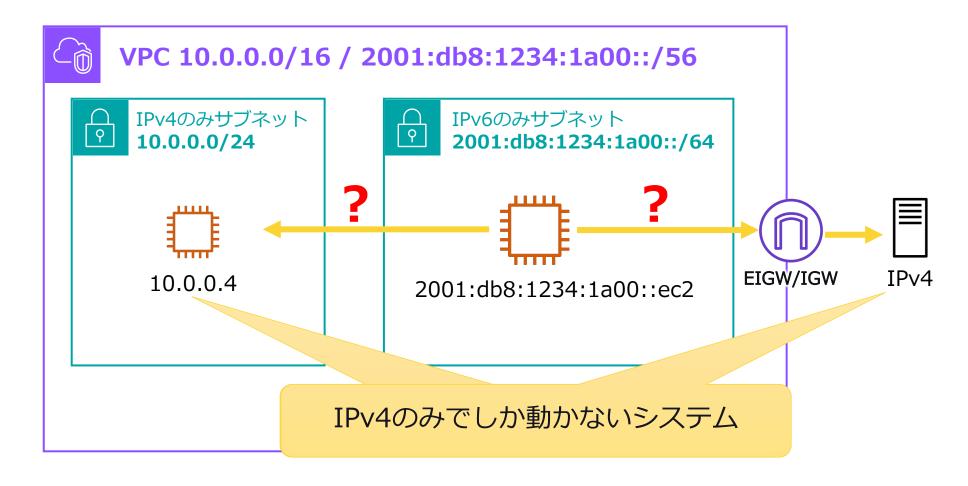
マネージドCDN(Content Delivery Network)サービス

特徵 (http://aws.amazon.com/jp/cloudfront/)

- 簡単にサイトの高速化が実現できると共に、 サーバの負荷も軽減
- 様々な規模のアクセスを処理することが可能
- ・世界450箇所以上のPOP
- IPv4で構成されたオリジンをIPv6で公開可能

価格体系 (http://aws.amazon.com/jp/cloudfront/pricing/)

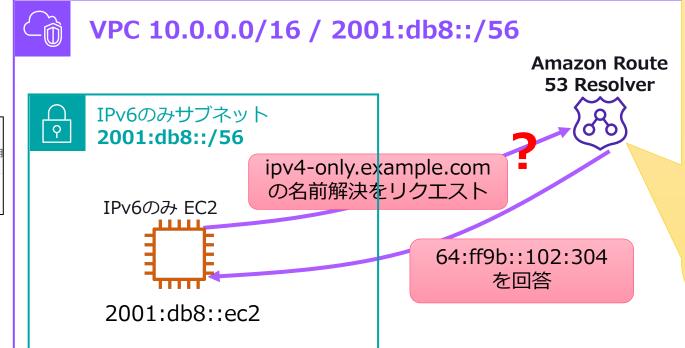
- データ転送量(OUT)
- HTTP/HTTPSリクエスト数
- ・ (利用する場合)SSL独自証明書 など
- ・無料枠:1か月あたり最大1TBのデータ転送



通信先のシステムが IPv6未対応のとき

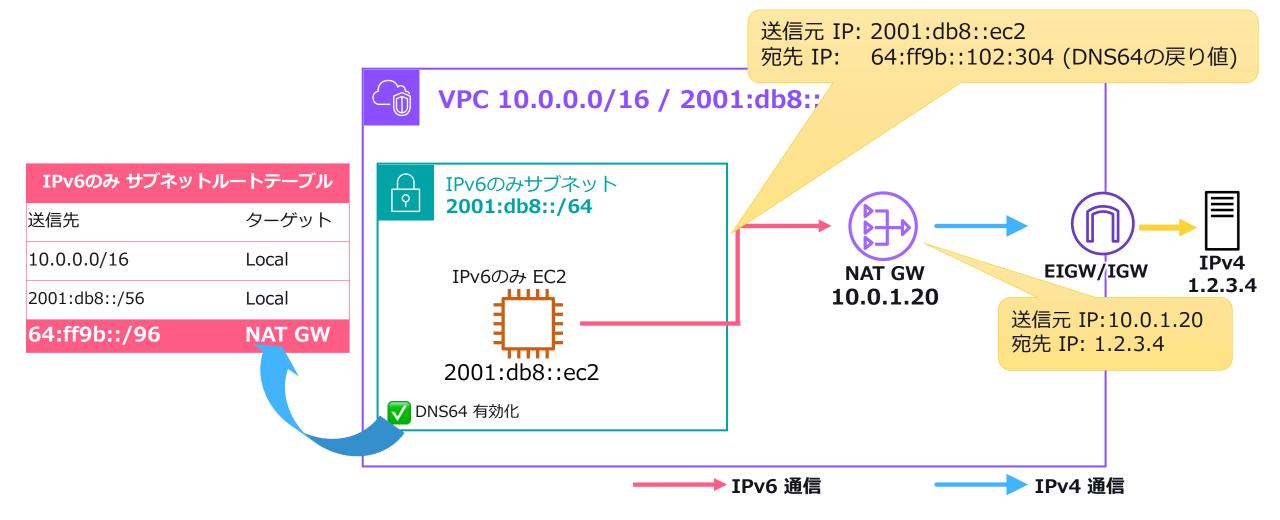
DNS64/NAT64

ホストがIPv6のみの場合、相手に合わせて通信する必要性あり



DNS64の動き

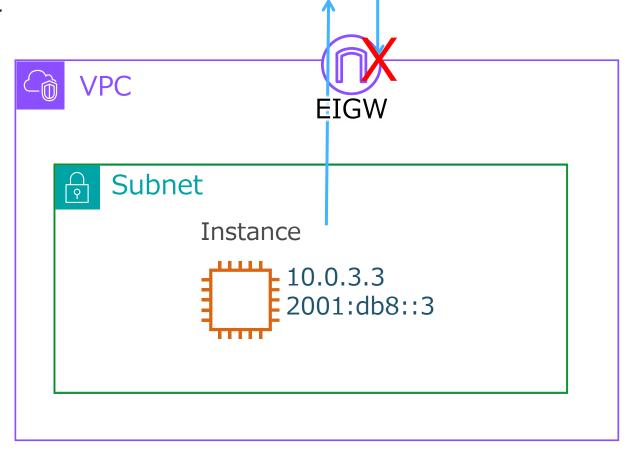
VPCで『DNS64』機能を有効かすると・・・


レコード内のIPv4 アドレスの先頭に RFC6052で定義された"64:ff9b::/96" を付けてIPv6アドレスを合成して返す。 注意:回答を偽造するともとらえられ、DNSSECの検証が失敗する可能性あり

	Туре	Value	Amazon Route 53 Resolverの戻り値
Ipv4-only.example.com	Α	1.2.3.4	64:ff9b::102:304
Ipv6-only.example.com	AAAA	2001:db8::1	2001:db8::1

NAT64の動き

通信相手がIPv4のみを持つ場合に有効


Egress-only Internet Gateway (EIGW)

IPv6通信はアウトバウンドのみ可能にしたい場合

- ・IPv6経由でアウトバウンドに限定した インターネットアクセスを提供
- IPv4通信に影響を与えない
- コスト負担なし
- ・パフォーマンスや可用性の制限はない

ルートテーブルの例

送信先	ターゲット	ステータス
172.16.0.0/24	local	active
2406:da14:4d1:6800::/56	local	active
0.0.0.0/0	igw-05d751013e99ca39e	active
::/0	eigw-abcd123456789efg tive	

4.IPv6環境における 注意点と対策

デュアルスタック環境特有の 考慮事項

デュアルスタック環境特有の考慮事項

IPv6とIPv4は別のネットワーク環境であることを理解する

- ・2つのネットワークについて、それぞれ設計・設定・管理・運用が必要となる。
- 個別のセキュリティ設定が必要、フィルタリングも別に設定する。
- ルートテーブル、ゲートウェイは別途設定する。
- 各ゲートウェイの機能は、双方向でどのような制御が必要かを確認する。
- 名前解決についても考慮し、DNSリソースレコードにおいて、Aレコード、AAAA レコードの両方を管理する。

デュアルスタックのWebサイトを公開する際の考慮

- IPv4とIPv6のデュアルスタックでサービスを提供する場合、どちらのIPアドレスを利用するのか、最終的にはアクセス元環境に依存する。
- Happy Eyeballs ver.2(RFC8305)では、IPv6を優先する仕様。しかし、すべての環境・ウェブブラウザでこの通り動作するとは限らない。

参考:

Internet Week ショーケースin 広島 世界で進むIPv4の品質劣化とIPv6の導入、ところで企業のIPv6対応は? https://www.nic.ad.jp/sc-hiroshima/program/nakagawa.pdf#page=15

- 最近は、IPスタックを使い分ける他の概念も出てきている。
- 影響しそうな機構: Windows AD、Proxy、URLフィルタ、ウイルスチェック等

運用管理とセキュリティの 実践

IPv6通信を考慮したログ管理/運用

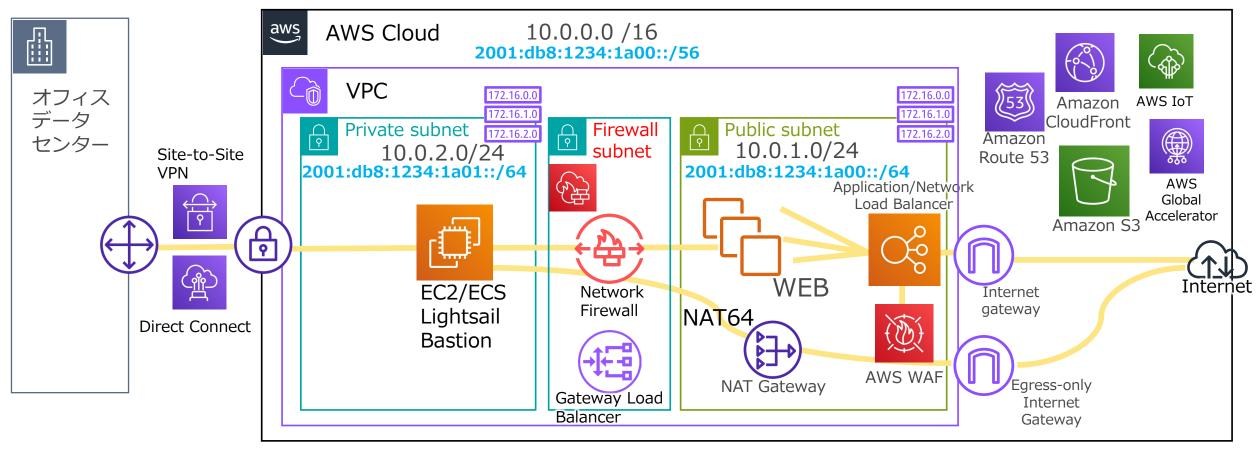
- 1.ログフォーマットの対応
 - A) IPv6アドレスは128ビットと長いため、独自ス クリプトなどで、ログフォーマットがIPv6アド レスを適切に処理できることを確認
 - B) CloudWatchやVPCフローログなどのログ設定でフォーマットの"protocol"と"type"フィールドを確認

フィールド	内容
version	3
account-id	384767312456
interface-id	eni-0b62d5e000e412345
srcaddr	2001:db8:85a3:8d3:1319:8a2e:370:7348
dstaddr	2001:db8:85a3:8d3:1319:8a2e:370:7347
srcport	50565
dstport	80
protocol	6
packets	7
bytes	751
start	1573704396
end	1573704455
action	ACCEPT
log-status	OK
vpc-id	vpc-0af48868ceeb12345
subnet-id	subnet-02ab634d2e4c12345
instance-id	i-0a998a68301112345
tcp-flags	3
type	IPv6
pkt-srcaddr	2001:db8:85a3:8d3:1319:8a2e:370:7348
pkt-dstaddr	2001:db8:85a3:8d3:1319:8a2e:370:7347
region	ap-northeast-1
az-id	apne1-az1
sublocation-type	-
sublocation-id	-
pkt-src-aws-service	ROUTE53_HELTHCHECKS
pkt-dst-aws-service	EC2
flow-direction	ingress
traffic-path	6

IPv6通信を考慮したログ管理/運用(続き)

2. キュリティ対応

- A) 通常はIPv6特有の攻撃パターンも意識するが、AWSクラウドではマルチキャストアドレスに非対応なので、過度にICMPv6対策をする必要はない
 - ・標準的なAWS VPC環境では、マルチキャストは非サポート
 - Transit Gatewayのマルチキャスト機能は、現時点でIPv4のみをサポート
- B) AWSマネージドサービス(AWS Configなど)のマネージドルールで、IPv6トラフィックが監視対象となることを確認、カスタムルールでは修正が必要な場合もある
- 3. ログ保存容量・保存期間・分析環境
 - A) マネージド・独自の分析ツールでIPv6アドレスを適切に処理可能かを確認
 - B) ストレージへの保存形式をIPv6と同一にするか、分別するか等検討



5.まとめ

⑥IPv6の現状(再掲)

VPC、EC2、ELB、Network Firewall、CloudFront、WAF、Route53、Global AcceleratorなどがIPv6対応

Egress-only Internet Gateway(EIGW) を利用して IPv6においてもプライベート利用が可能

上記のような構成をIPv4/IPv6デュアルスタックで構築可能

まとめ

- 今後、いつまでもIPv4アドレスで拡張できるとは限らない
- ・早くからIPv6利用のノウハウを溜めておくことも有用
- クラウドなら検証環境で気軽にトライ&エラーができ、 低リスクで新しいことが始められる
- ・既存の環境との併用も可能

IPv6の利用ドキュメントもご用意してあります

お問い合わせ サポート▼ 日本語▼ アカウント▼

グできます。

https://docs.aws.amazon.com/ja_jp/vpc/latest/userguide/get-started-ipv6.html

https://aws.amazon.com/jp/blogs/networking-and-content-delivery/dual-stack-ipv6-

architectures-for-aws-and-hybrid-networks/

https://aws.amazon.com/jp/vpc/ipv6/

IPv6 on AWS

st practices for adopting and designing IPv6-based networks on AWS

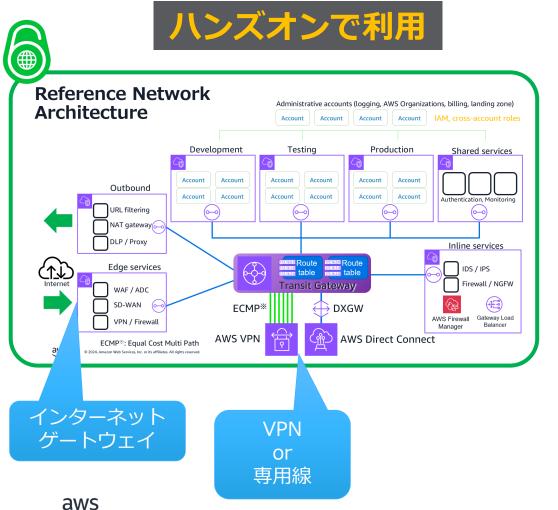
October 26, 2021

56

Thank you!

菊地 信明

アマゾン ウェブ サービス ジャパン合同会社 シニア ソリューション アーキテクト ネットワーク スペシャリスト


【参考】 個別サービスの対応状況

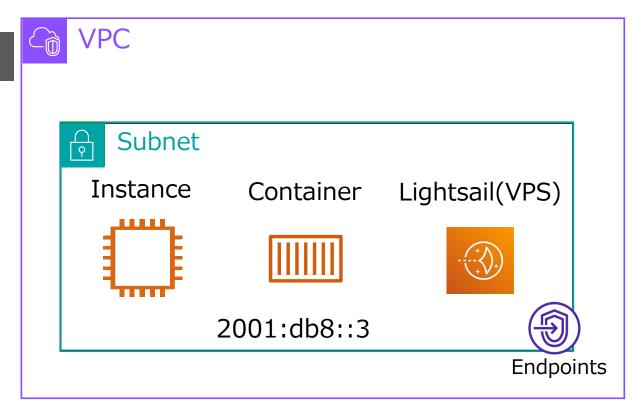
Amazon VPC (Virtual Private Cloud)

仮想プライベートクラウドサービス

特徵 (http://aws.amazon.com/jp/vpc/)

- AWS上にプライベートネットワークを構築
- AWSと既存環境のハイブリッド構成を実現
- ・きめ細かいネットワーク設定が可能

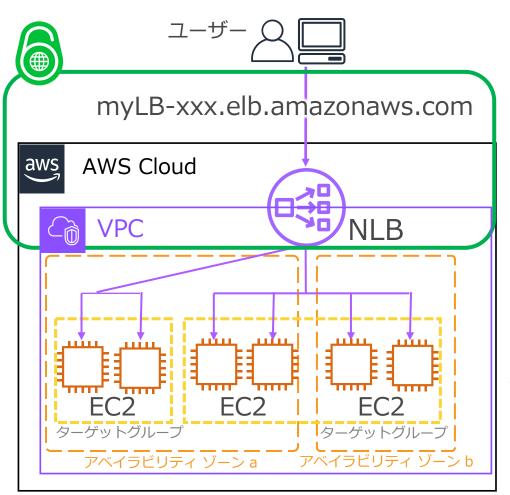
BYOIPv6に対応


価格体系 (http://aws.amazon.com/jp/vpc/pricing/)

VPCの利用は無料

コンピュートリソース

- 三種類のコンピュートリソース が対応
 - 仮想マシン(EC2) ハンズオンで利用
 - ・コンテナ(ECS)
 - VPS(Lightsail)
- APIコールを行うVPC Endpoint もIPv6に対応



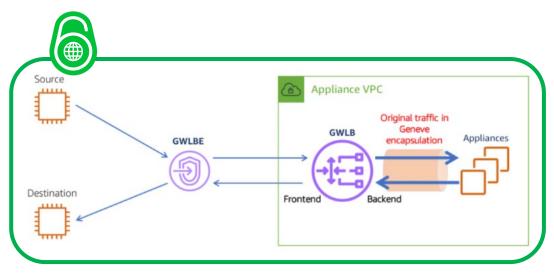
Network Load Balancer (NLB)

レイヤー4のコネクションベースのロードバランサー

(https://aws.amazon.com/jp/elasticloadbalancing/network-load-balancer/)

- TCP、UDP(L4)のバランサとして機能
 - TCPがIPv6対応
- 固定IPアドレス: AZ毎に1つ、既に持っているEIPも利 用可能
- 送信元IPアドレスの保持: X-Forwarded-ForやProxy Protocolが不要
- 暖気なしに急激なスパイクにも対応可能
- ・SSLオフロード

価格体系 (https://aws.amazon.com/elasticloadbalancing/pricing/)


- ・ NLBの起動時間
- Load Balancer Capacity Units (LCU)の使用量

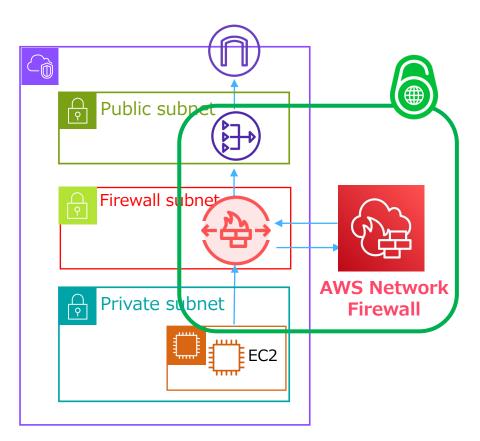
Gateway Load Balancer (GWLB)

L3ゲートウェイとL4ロードバランサの機能を兼ね備えた新タイプのロードバランサ

特徵 (https://aws.amazon.com/jp/elasticloadbalancing/gateway-load-balancer/)

- Gateway Load Balancerエンドポイント(GWLBE)に入るトラフィックをGWLBへ配送し、アプライアンス が稼働するEC2へ転送
- ネットワークトラフィックに対して透過型
- サードパーティーアプライアンスのAZ冗長に活用
- ・ 送信元/送信先IPアドレスの保持
- 急激なスパイクにも対応可能

価格体系 (https://aws.amazon.com/elasticloadbalancing/pricing/)


- ・ NLBの起動時間
- Load Balancer Capacity Units (LCU)の使用量
- Gateway Load Balancerエンドポイントの利用料としてPrivateLinkの利用料が加算

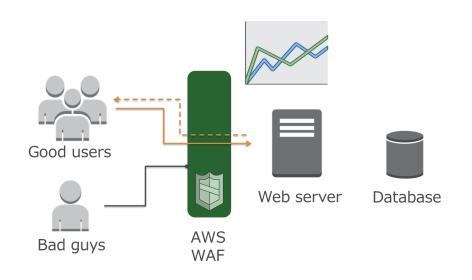
AWS Network Firewall (ANF)

VPCのサブネットに配置するマネージドファイアウォールサービス

特徵 (https://aws.amazon.com/jp/network-firewall/)

- 100 Gbpsまでスケールアウト
- AWSマネージドルールの他、サードパーティ製ルールの 利用も可能
- StatelessとStatefulルールの組み合わせによりトラフィッ クを制御する
- Domain Listによるフィルタリングが可能
- オープンソースのSuricata互換形式のルールを利用可能
- Transit Gatewayの専用アタッチメントに対応

価格体系 (https://aws.amazon.com/elasticloadbalancing/pricing/)


- Endpointの起動時間
- Network Firewallのデータ処理料
- NAT Gateway(NGW)と併用した場合、NGWの利用料を 免除

AWS WAF(Web Application Firewall)

AWSが提供するウェブアプリケーションファイアウォール

特徵 (https://aws.amazon.com/jp/waf/)

- カスタムルールによるアクセス制御を実現
- SQLインジェクションやXSS攻撃などへの対応が可能。APIを利用した動的なルールの変更もサポート
- CloudFrontとALB (Application Load Balancer)、APIGWで利用できる

価格体系 (https://aws.amazon.com/jp/waf/pricing/)

- ウェブACLの数とルール数
- ・ リクエスト数

Amazon Route 53 ハンズオンで利用

高い可用性と豊富な機能を提供するフルマネージドな権威DNS

Route53の特徴的な機能

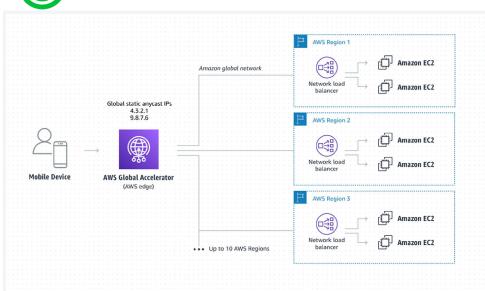
- 各ネームサーバは冗長化され世界中に 分散配置。
- IP Anycast
- ヘルスチェック/DNSフェイルオーバー
- 重み付けラウンドロビン
- レイテンシーベースルーティング
- ジオルーティング
- ドメイン取得と管理
- AAAA, Query in IPv6
- DNSSEC
- DNS64

特徵 (http://aws.amazon.com/jp/route53/)

- 高い可用性: Amazon Route53は世界中に配置さ れたサーバーによって、非常に高い可用性を提供
- 多様な機能:管理ホストに対するヘルスチェックや 様々なアルゴリズムによるラウンドロビンなど、柔 軟なアプリケーションの運用を助ける機能が豊富
- アプリケーションの内部DNSとしても利用可能

価格体系 (http://aws.amazon.com/jp/route53/pricing/)

- 非常に低価格なのが特徴。
- ・ ホストするゾーンあたり 0.5USD/月
- 標準クエリ: 10億クエリあたり0.4USD



AWS Global Accelerator

IPv6トラフィックをデュアルスタックのApplication Load Balancer エンドポイントにルーティング

特徵 (https://aws.amazon.com/jp/global-accelerator)

- パフォーマンス向上: AWのグローバルネットワーク インフラを利用して、ユーザーのトラフィックのパ フォーマンスを最大 60% 向上させるネットワーキン グサービス
- マルチリージョン対応:マルチリージョンアプリケーション向けの、簡素化した回復力のあるトラフィックルーティング
- 固定IP要件: IPv4/6でそれぞれ2つの静的 IP を提供

価格体系 (https://aws.amazon.com/jp/global-accelerator/pricing/)

- 固定料金とプレミアムデータ転送料金で構成
- アクセラレーターあたり18 USD/月
- ・ データ転送料: 送信元/先リージョン毎に定義

